Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (12): 1387-1395.DOI: 10.15541/jim20230098
Special Issue: 【能源环境】钙钛矿(202409); 【能源环境】太阳能电池(202409)
• RESEARCH ARTICLE • Previous Articles Next Articles
MA Tingting1,2(), WANG Zhipeng1,2, ZHANG Mei1,2, GUO Min1,2(
)
Received:
2023-02-27
Revised:
2023-06-21
Published:
2023-06-28
Online:
2023-06-28
Contact:
GUO Min, professor. E-mail: guomin@ustb.edu.cnAbout author:
MA Tingting (1997-), female, Master candidate. E-mail: matingting202202@163.com
Supported by:
CLC Number:
MA Tingting, WANG Zhipeng, ZHANG Mei, GUO Min. Performance Optimization of Ultra-long Stable Mixed Cation Perovskite Solar Cells[J]. Journal of Inorganic Materials, 2023, 38(12): 1387-1395.
Fig. 2 Crystal structures and morphologies of different samples (a) XRD patterns; (b) Locally magnified XRD patterns in the range of 2θ=12.8°-15°; (c, e, g) SEM images and (d, f, h) Statistical distributions of grain diameter for (c, d) MP, (e, f) MFP, and (g, h) CMFP
Fig. 3 Photovoltaic performances of PSCs Statistical diagram of (a) PCE, (b) Jsc, (c) Voc, and (d) FF; (e) J-V curves; (f) EQE spectra. Colorful figures are available on website
Sample | Jsc /(mA•cm-2) | Voc/V | FF | PCE/% | PCEmax/% |
---|---|---|---|---|---|
MP | 21.32±0.99 | 0.95±0.03 | 0.74±0.02 | 15.11±0.86 | 16.31 |
MFP | 22.94±0.98 | 0.99±0.04 | 0.76±0.03 | 17.18±0.61 | 18.87 |
CMFP | 22.24±0.77 | 1.03±0.03 | 0.78±0.02 | 17.83±0.33 | 19.34 |
Table 1 Photovoltaic parameters of three types of perovskite solar cells
Sample | Jsc /(mA•cm-2) | Voc/V | FF | PCE/% | PCEmax/% |
---|---|---|---|---|---|
MP | 21.32±0.99 | 0.95±0.03 | 0.74±0.02 | 15.11±0.86 | 16.31 |
MFP | 22.94±0.98 | 0.99±0.04 | 0.76±0.03 | 17.18±0.61 | 18.87 |
CMFP | 22.24±0.77 | 1.03±0.03 | 0.78±0.02 | 17.83±0.33 | 19.34 |
Fig. 4 Photoelectric properties and energy levels of three perovskite films (a) UV-Vis absorption spectra; (b) Tauc plots; (c) PL and (d) TRPL spectra excited from the perovskite layer;(e) Energy level schematics of three samples
Fig. 5 Interface transmission and carrier recombination characteristics of PSCs (a) PL and (b) TRPL spectra excited from FTO layer; (c) Dark-state EIS profiles of the device at 0.8 Vbias with inset showing an equivalent circuit diagram
Fig. S1 UPS profiles of three perovskite films (a) UPS full spectra; UPS spectra corresponding to the secondary electron cutoff region for (b) MP, (c) MFP, (d) CMFP;(e) UPS valence band spectra; UPS spectra of the valence band top region with respect to the Femi level for (f) MP, (g) MFP, (h) CMFP
Sample | Jsc /(mA•cm-2) | Voc/V | FF | PCEmax/% | Intergrated current density/(mA•cm-2) |
---|---|---|---|---|---|
MP | 22.87 | 0.97 | 0.74 | 16.34 | 21.87 |
MFP | 23.48 | 1.05 | 0.76 | 18.66 | 22.71 |
CMFP | 23.30 | 1.06 | 0.78 | 19.34 | 22.37 |
Table S1 Performance parameters of three best performing PSCs (Fig. 3 (e) and Fig. S1)
Sample | Jsc /(mA•cm-2) | Voc/V | FF | PCEmax/% | Intergrated current density/(mA•cm-2) |
---|---|---|---|---|---|
MP | 22.87 | 0.97 | 0.74 | 16.34 | 21.87 |
MFP | 23.48 | 1.05 | 0.76 | 18.66 | 22.71 |
CMFP | 23.30 | 1.06 | 0.78 | 19.34 | 22.37 |
Sample | τ1/ns | τ2/ns | B1 | B2 | τmean/ns |
---|---|---|---|---|---|
MP | 33.64 | 96.21 | 0.45 | 0.55 | 68.05 |
MFP | 31.70 | 81.41 | 0.68 | 0.32 | 47.61 |
CMFP | 26.51 | 77.12 | 0.22 | 0.78 | 65.99 |
Table S2 Fitting results of transient spectra (Fig. 4(d)) excited from the perovskite side
Sample | τ1/ns | τ2/ns | B1 | B2 | τmean/ns |
---|---|---|---|---|---|
MP | 33.64 | 96.21 | 0.45 | 0.55 | 68.05 |
MFP | 31.70 | 81.41 | 0.68 | 0.32 | 47.61 |
CMFP | 26.51 | 77.12 | 0.22 | 0.78 | 65.99 |
Sample | Ф/eV | EVB/eV | Eg/eV | ECB/eV | |
---|---|---|---|---|---|
MP | 3.74 | 1.59 | -5.33 | 1.61 | -3.72 |
MFP | 4.02 | 1.49 | -5.51 | 1.55 | -3.96 |
CMFP | 3.93 | 1.47 | -5.40 | 1.55 | -3.85 |
Table S3 EVB and ECB of three perovskite films calculated from UPS profiles (Fig. S1)
Sample | Ф/eV | EVB/eV | Eg/eV | ECB/eV | |
---|---|---|---|---|---|
MP | 3.74 | 1.59 | -5.33 | 1.61 | -3.72 |
MFP | 4.02 | 1.49 | -5.51 | 1.55 | -3.96 |
CMFP | 3.93 | 1.47 | -5.40 | 1.55 | -3.85 |
Sample | ||||
---|---|---|---|---|
MP | 75.22 | 422.18 | 0.47 | 0.53 |
MFP | 35.4 | 21.42 | 0.38 | 0.62 |
CMFP | 8.21 | 34.52 | 0.76 | 0.24 |
Table S4 Fitting results of transient spectra (Fig. 5(b)) excited from the FTO side
Sample | ||||
---|---|---|---|---|
MP | 75.22 | 422.18 | 0.47 | 0.53 |
MFP | 35.4 | 21.42 | 0.38 | 0.62 |
CMFP | 8.21 | 34.52 | 0.76 | 0.24 |
Long-term stability | Rs/(Ω·cm2) | Rrec/(Ω·cm2) | Rnrec | |
---|---|---|---|---|
Before testing | MP | 32.40 | 4932 | — |
MFP | 27.18 | 7261 | — | |
CMFP | 21.84 | 10890 | — | |
After testing | MP | 47.99 | 1462 | 0.30 |
MFP | 39.88 | 5430 | 0.75 | |
CMFP | 34.16 | 9173 | 0.84 |
Table S5 Fitting results of EIS (Fig. 7) data
Long-term stability | Rs/(Ω·cm2) | Rrec/(Ω·cm2) | Rnrec | |
---|---|---|---|---|
Before testing | MP | 32.40 | 4932 | — |
MFP | 27.18 | 7261 | — | |
CMFP | 21.84 | 10890 | — | |
After testing | MP | 47.99 | 1462 | 0.30 |
MFP | 39.88 | 5430 | 0.75 | |
CMFP | 34.16 | 9173 | 0.84 |
Sample | FFn | Vnoc | Jnsc | PCEn |
---|---|---|---|---|
MP | 0.54 | 0.85 | 0.63 | 0.30 |
MFP | 0.90 | 0.94 | 0.92 | 0.81 |
CMFP | 0.88 | 0.96 | 0.90 | 0.85 |
Table S6 Relative J-V values of three PSCs after long-term stability testing
Sample | FFn | Vnoc | Jnsc | PCEn |
---|---|---|---|---|
MP | 0.54 | 0.85 | 0.63 | 0.30 |
MFP | 0.90 | 0.94 | 0.92 | 0.81 |
CMFP | 0.88 | 0.96 | 0.90 | 0.85 |
Sample | FFn | Vnoc | Jnsc | PCEn |
---|---|---|---|---|
MP | 0.81 | 0.89 | 0.87 | 0.70 |
MFP | 0.94 | 0.94 | 0.92 | 0.93 |
CMFP | 0.95 | 0.96 | 0.95 | 0.99 |
Table S7 Relative J-V values of three PSCs after thermal stability testing
Sample | FFn | Vnoc | Jnsc | PCEn |
---|---|---|---|---|
MP | 0.81 | 0.89 | 0.87 | 0.70 |
MFP | 0.94 | 0.94 | 0.92 | 0.93 |
CMFP | 0.95 | 0.96 | 0.95 | 0.99 |
Sample | FFn | Vnoc | Jnsc | PCEn |
---|---|---|---|---|
MP | 0.72 | 0.86 | 0.88 | 0.56 |
MFP | 0.89 | 0.92 | 0.90 | 0.78 |
CMFP | 0.91 | 0.96 | 0.92 | 0.84 |
Table S8 Relative J-V values of three PSCs after wet stability testing
Sample | FFn | Vnoc | Jnsc | PCEn |
---|---|---|---|---|
MP | 0.72 | 0.86 | 0.88 | 0.56 |
MFP | 0.89 | 0.92 | 0.90 | 0.78 |
CMFP | 0.91 | 0.96 | 0.92 | 0.84 |
[1] | HUSSAIN A, ARIF S M, ASLAM M. Emerging renewable and sustainable energy technologies: state of the art. Renewable and Sustainable Energy Reviews, 2017, 71: 12. |
[2] |
AKIHIRO K, KENJIRO T, YASUO S, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131(17): 6050.
DOI PMID |
[3] |
MEI A, LI X, LIU L, et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science, 2014, 345(6194): 295.
DOI PMID |
[4] |
LEIJTENS T, BUSH K A, PRASANNA R, et al. Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nature Energy, 2018, 3(10): 828.
DOI |
[5] |
JIN Y K, LEE J W, JUNG H S, et al. High-efficiency perovskite solar cells. Chemical Reviews, 2020, 120(15): 7867.
DOI PMID |
[6] |
VALADI K, GHARIBI S, TAHERI-LEDARI R, et al. Metal oxide electron transport materials for perovskite solar cells: a review. Environmental Chemistry Letters, 2021, 19(3): 2185.
DOI |
[7] |
AVA T T, MAMUN A A, MARSILLAC S, et al. A review: thermal stability of methylammonium lead halide based perovskite solar cells. Applied Sciences, 2019, 9(1): 188.
DOI URL |
[8] |
ZHANG C, WANG Y, LIN X, et al. Effects of A site doping on the crystallization of perovskite films. Journal of Materials Chemistry A, 2021, 9(3): 1372.
DOI URL |
[9] |
GONG J, GUO P, BENJAMIN S E, et al. Cation engineering on lead iodide perovskites for stable and high-performance photovoltaic applications. Journal of Energy Chemistry, 2018, 27(4): 1017.
DOI |
[10] |
KNIGHT A J, BORCHERT J, OLIVER R D J, et al. Halide segregation in mixed-halide perovskites: influence of A-site cations. ACS Energy Letters, 2021, 6(2): 799.
DOI PMID |
[11] |
YANG Y, GAO J, CUI J R, et al. Research progress of perovskite solar cells. Journal of Inorganic Materials, 2015, 30(11): 1131.
DOI URL |
[12] |
CHU Z Y, LI G L, JIANG Z H, et al. Recent progress in high- quality perovskite CH3NH3PbI3 single crystal. Journal of Inorganic Materials, 2018, 33(10): 1035.
DOI URL |
[13] |
WELLER M T, WEBER O J, CHARLES B. Phase behaviour and composition in the formamidinium-methylammonium hybrid lead iodide perovskite solid solution. Journal of Materials Chemistry A, 2016, 4(40): 15375.
DOI URL |
[14] |
YIN W J, YANG J H, KANG J, et al. Halide perovskite materials for solar cells: a theoretical review. Journal of Materials Chemistry A, 2015, 3(17): 8926.
DOI URL |
[15] |
CONINGS B, DRIJKONINGEN J, GAUQUELIN N, et al. Intrinsic thermal instability of methylammonium lead trihalide perovskite. Advanced Energy Materials, 2015, 5(15): 1500477.
DOI URL |
[16] | LU H, LIU Y, AHLAWAT P, et al. Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells. Science, 2020, 370(6512): 74. |
[17] | EPERON G E, STRANKS S D, MENELAOU C, et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy & Environmental Science, 2014, 7(3): 982. |
[18] |
YU B, SHI J, TAN S, et al. Efficient (>20%) and stable all- inorganic cesium lead triiodide solar cell enabled by thiocyanate molten salts. Angewandte Chemie International Edition, 2021, 60(24): 13436.
DOI URL |
[19] |
PELLET N, GAO P, GREGORI G, et al. Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. Angewandte Chemie International Edition, 2014, 53(12): 3151.
DOI URL |
[20] |
JASON J, GABKYUNG, CHUA R M, et al. Efficient perovskite solar cells via improved carrier management. Nature, 2021, 590(7847): 587.
DOI |
[21] | SALIBA M, MATSUI T, SEO J Y, et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy & Environmental Science, 2016, 9(6): 1989. |
[22] |
SUSANA R, FRANCISCO I J, DIEGO B, et al. Insight into the role of guanidinium and cesium in triple cation lead halide perovskites. Solar RRL, 2021, 5(12): 2100586.
DOI URL |
[23] |
WANG Z, LI R, HUO X. Effcient and stable TiO2 nanorod array structured perovskite solar cells in air: co-passivation and synergistic mechanism. Ceramics International, 2022, 48(12): 17950.
DOI URL |
[24] |
LEE J W, SEOL D J, CHO A N, et al. High-efficiency perovskite solar cells based on the black polymorph of HC(NH2)2PbI3. Advanced Materials, 2014, 26(29): 4991.
DOI URL |
[25] |
KOH T M, FU K, FANG Y, et al. Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells. Journal of Physical Chemistry C, 2014. 118(30): 16458.
DOI URL |
[26] |
GUO M, ZHANG M, LI R, et al. Nb2O5 coating on the performance of flexible dye sensitized solar cell based on TiO2 nanoarrays/upconversion luminescence composite structure. Journal of Inorganic Materials, 2019, 34(6): 590.
DOI URL |
[27] |
HAGFELDT A, GRAETZEL M. Light-induced redox reactions in nanocrystalline systems. Chemical Reviews, 1995, 95(1): 49.
DOI URL |
[28] |
BI D, YI C, LUO J, et al. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nature Energy, 2016, 1(10): 16142.
DOI |
[1] | XIAO Zichen, HE Shihao, QIU Chengyuan, DENG Pan, ZHANG Wei, DAI Weideren, GOU Yanzhuo, LI Jinhua, YOU Jun, WANG Xianbao, LIN Liangyou. Nanofiber-modified Electron Transport Layer for Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(7): 828-834. |
[2] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[3] | CHEN Tian, LUO Yuan, ZHU Liu, GUO Xueyi, YANG Ying. Organic-inorganic Co-addition to Improve Mechanical Bending and Environmental Stability of Flexible Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(5): 477-484. |
[4] | YU Man, GAO Rongyao, QIN Yujun, AI Xicheng. Influence of Upconversion Luminescent Nanoparticles on Hysteresis Effect and Ion Migration Kinetics in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(4): 359-366. |
[5] | ZHOU Zezhu, LIANG Zihui, LI Jing, WU Congcong. Preparation of MAPbI3 Perovskite Solar Cells/Module via Volatile Solvents [J]. Journal of Inorganic Materials, 2024, 39(11): 1197-1204. |
[6] | LI Qianyuan, LI Jiwei, ZHANG Yuhan, LIU Yankang, MENG Yang, CHU Yu, ZHU Yijia, XU Nuoyan, ZHU Liang, ZHANG Chuanxiang, TAO Haijun. Enhanced Photovoltaic Performance of Perovskite Solar Cells by PbTiO3 Modification and Polarization Treatment [J]. Journal of Inorganic Materials, 2024, 39(11): 1205-1211. |
[7] | DING Tongshun, FENG Ping, SUN Xuewen, SHAN Husheng, LI Qi, SONG Jian. Perovskite Film Passivated by Fmoc-FF-OH and Its Photovoltaic Performance [J]. Journal of Inorganic Materials, 2023, 38(9): 1076-1082. |
[8] | FANG Wanli, SHEN Lili, LI Haiyan, CHEN Xinyu, CHEN Zongqi, SHOU Chunhui, ZHAO Bin, YANG Songwang. Effect of Film Formation Processes of NiOx Mesoporous Layer on Performance of Perovskite Solar Cells with Carbon Electrodes [J]. Journal of Inorganic Materials, 2023, 38(9): 1103-1109. |
[9] | HAN Xu, YAO Hengda, LYU Mei, LU Hongbo, ZHU Jun. Application of Single-molecule Liquid Crystal Additives in CH(NH2)2PbI3 Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(9): 1097-1102. |
[10] | CHEN Yu, LIN Puan, CAI Bing, ZHANG Wenhua. Research Progress of Inorganic Hole Transport Materials in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(9): 991-1004. |
[11] | ZHANG Wanwen, LUO Jianqiang, LIU Shujuan, MA Jianguo, ZHANG Xiaoping, YANG Songwang. Zirconia Spacer: Preparation by Low Temperature Spray-coating and Application in Triple-layer Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(2): 213-218. |
[12] | WANG Ye, JIAO Yinan, GUO Junxia, LIU Huan, LI Rui, SHANG Zixuan, ZHANG Shidong, WANG Yonghao, GENG Haichuan, HOU Denglu, ZHAO Jinjin. Optimization of Interfacial Engineering of Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(11): 1323-1330. |
[13] | JIAO Boxin, LIU Xingchong, QUAN Ziwei, PENG Yongshan, ZHOU Ruonan, LI Haimin. Performance of Perovskite solar cells Doped with L-arginine [J]. Journal of Inorganic Materials, 2022, 37(6): 669-675. |
[14] | YANG Xinyue, DONG Qingshun, ZHAO Weidong, SHI Yantao. 4-Chlorobenzylamine-based 2D/3D Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2022, 37(1): 72-78. |
[15] | LIU Wenwen, HU Zhilei, WANG Li, CAO Mengsha, ZHANG Jing, ZHANG Jing, ZHANG Shuai, YUAN Ningyi, DING Jianning. Passiviation of L-3-(4-Pyridyl)-alanine on Interfacial Defects of Perovskite Solar Cell [J]. Journal of Inorganic Materials, 2021, 36(6): 629-636. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||