Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (9): 1083-1088.DOI: 10.15541/jim20230005
Special Issue: 【能源环境】钙钛矿(202409)
• RESEARCH ARTICLE • Previous Articles Next Articles
WANG Machao1,2(), TANG Yangmin1,2, DENG Mingxue1, ZHOU Zhenzhen1, LIU Xiaofeng3, WANG Jiacheng1,2(
), LIU Qian1(
)
Received:
2023-01-03
Revised:
2023-03-15
Published:
2023-09-20
Online:
2023-04-11
Contact:
WANG Jiacheng, professor. E-mail: jiacheng.wang@mail.sic.ac.cn;About author:
WANG Machao (1998-), male, Master candidate. E-mail: wangmachao21@mails.ucas.ac.cn
Supported by:
CLC Number:
WANG Machao, TANG Yangmin, DENG Mingxue, ZHOU Zhenzhen, LIU Xiaofeng, WANG Jiacheng, LIU Qian. Cs2Ag0.1Na0.9BiCl6:Tm3+ Double Perovskite: Coprecipitation Preparation and Near-infrared Emission[J]. Journal of Inorganic Materials, 2023, 38(9): 1083-1088.
Fig. 1 Microstructure of crystals (a) Crystal structure and (b) XRD patterns of Cs2NaBiCl6, Cs2Ag0.1Na0.9BiCl6, and Cs2Ag0.1Na0.9BiCl6:Tm3+; (c) SEM image (left) and EDS elemental mappings (right) of Cs2Ag0.1Na0.9BiCl6:Tm3+
Fig. 2 Band gaps of Cs2NaBiCl6, Cs2Ag0.1Na0.9BiCl6 and Cs2Ag0.1Na0.9BiCl6:Tm3+ crystals (a) Optical absorption; (b) Tauc plots. Colorful figures are available on the website
Fig. 3 XPS and Raman characterizations of crystals (a) Total XPS spectra, and (b) Ag3d, (c) Na1s, (d) Bi4f, and (e) Cl2p high-resolution XPS spectra of Cs2NaBiCl6, Cs2Ag0.1Na0.9BiCl6 and Cs2Ag0.1Na0.9BiCl6:Tm3+; (f) Raman spectra of Cs2Ag0.1Na0.9BiCl6 and Cs2NaBiCl6
Fig. 4 Optical properties of crystals (a) Photoluminescence emission (PL) spectra, (c) integrated NIR emission intensity and (d) photoluminescence quantum yield (PLQY) of Cs2NaBiCl6, Cs2Ag0.1Na0.9BiCl6 and Cs2Ag0.1Na0.9BiCl6:Tm3+; (b) excitation (PLE) spectra and (e) PL decay curves (λem = 680 nm) of Cs2Ag0.1Na0.9BiCl6 and Cs2Ag0.1Na0.9BiCl6:Tm3+; Colorful figures are available on website
[1] |
HAN G, LI G, HUANG J, et al. Two-photon-absorbing ruthenium complexes enable near infrared light-driven photocatalysis. Nature Communications, 2022, 13: 2288.
DOI PMID |
[2] |
MARQUES E J, DE FREITAS S T, PIMENTEL M F, et al. Rapid and non-destructive determination of quality parameters in the ‘Tommy Atkins’ mango using a novel handheld near infrared spectrometer. Food Chemistry, 2016, 197: 1207.
DOI URL |
[3] |
HAYASHI D, VAN DONGEN A M, BOEREKAMP J, et al. A broadband LED source in visible to short-wave-infrared wavelengths for spectral tumor diagnostics. Applied Physics Letters, 2017, 110(23): 233701.
DOI URL |
[4] |
LIU D, LI G, DANG P, et al. Simultaneous broadening and enhancement of Cr3+ photoluminescence in LiIn2SbO6 by chemical unit cosubstitution: night-vision and near-infrared spectroscopy detection applications. Angewandte Chemie International Edition, 2021, 60(26): 14644.
DOI URL |
[5] |
ZHAO H, JI T, SUN T, et al. Comparative study on photobiomodulation between 630 nm and 810 nm LED in diabetic wound healing both in vitro and in vivo. Journal of Innovative Optical Health Sciences, 2022, 15(2): 2250010.
DOI URL |
[6] |
SHI L, REN X, WANG Q, et al. Tridecaboron diphosphide: a new infrared light active photocatalyst for efficient CO2 photoreduction under mild reaction conditions. Journal of Materials Chemistry A, 2021, 9(4): 2421.
DOI URL |
[7] |
FRIBERG T R, KARATZA E C. The treatment of macular disease using a micropulsed and continuous wave 810-nm diode laser. Ophthalmology, 1997, 104(12): 2030.
DOI PMID |
[8] |
RAJENDRAN V, FANG M H, GUZMAN G N D, et al. Super broadband near-infrared phosphors with high radiant flux as future light sources for spectroscopy applications. ACS Energy Letters, 2018, 3(11): 2679.
DOI URL |
[9] |
DE WOLF S, HOLOVSKY J, MOON S J, et al. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. The Journal of Physical Chemistry Letters, 2014, 5(6): 1035.
DOI URL |
[10] |
BRENNER T M, EGGER D A, KRONIK L, et al. Hybrid organic- inorganic perovskites: low-cost semiconductors with intriguing charge- transport properties. Nature Reviews Materials, 2016, 1: 15007.
DOI |
[11] |
GUO B, LAI R, JIANG S, et al. Ultrastable near-infrared perovskite light-emitting diodes. Nature Photonics, 2022, 16(9): 637.
DOI |
[12] |
VASILOPOULOU M, FAKHARUDDIN A, GARCÍA DE ARQUER F P, et al. Advances in solution-processed near-infrared light-emitting diodes. Nature Photonics, 2021, 15(9): 656.
DOI |
[13] |
ZHAO X, TAN Z K. Large-area near-infrared perovskite light- emitting diodes. Nature Photonics, 2020, 14(4): 215.
DOI |
[14] |
YUAN M, QUAN L N, COMIN R, et al. Perovskite energy funnels for efficient light-emitting diodes. Nature Nanotechnology, 2016, 11(10): 872.
DOI PMID |
[15] | STROYUK O, RAIEVSKA O, HAUCH J, et al. Doping/alloying pathways to lead-free halide perovskites with ultimate photoluminescence quantum yields. Angewandte Chemie International Edition, 2022, 62(3): e202212668. |
[16] |
LUO J, WANG X, LI S, et al. Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature, 2018, 563(7732): 541.
DOI |
[17] | ZHANG G, WANG D, LOU B, et al. Efficient broadband near-infrared emission from lead-free halide double perovskite single crystal. Angewandte Chemie International Edition, 2022, 61(33): e202207454. |
[18] |
YAO M, WANG L, YAO J, et al. Improving lead-free double perovskite Cs2NaBiCl6 nanocrystal optical properties via ion doping. Advanced Optical Materials, 2020, 8(8): 1901919.
DOI URL |
[19] |
HU Y, LI Z, WANG Z, et al. Suppressing local dendrites hotspot via current density redistribution using a superlithiophilic membrane for stable lithium metal anode. Advanced Science, 2023, doi: 10.1002/advs.202206995.
DOI |
[20] |
ZHENG Z, LIANG W, LIN R, et al. Facile synthesis of zinc indium oxide nanofibers distributed with low content of silver for superior antibacterial activity. Small Structures, 2023, 4(4): 2200291.
DOI URL |
[21] |
CHENG X, XIE Z, ZHENG W, et al. Boosting the self-trapped exciton emission in alloyed Cs2(Ag/Na)InCl6 double perovskite via Cu+ doping. Advanced Science, 2022, 9(7): 2103724.
DOI URL |
[22] | ZHENG W, SUN R, LIU Y, et al. Excitation management of lead-free perovskite nanocrystals through doping. ACS Applied Materials & Interfaces, 2021, 13(5): 6404. |
[1] | CHEN Zhengpeng, JIN Fangjun, LI Mingfei, DONG Jiangbo, XU Renci, XU Hanzhao, XIONG Kai, RAO Muming, CHEN Chuangting, LI Xiaowei, LING Yihan. Double Perovskite Sr2CoFeO5+δ: Preparation and Performance as Cathode Material for Intermediate-temperature Solid Oxide Fuel Cells [J]. Journal of Inorganic Materials, 2024, 39(3): 337-344. |
[2] | ZHANG Lun, LYU Mei, ZHU Jun. Research Progress of Cs2AgBiBr6 Perovskite Solar Cell [J]. Journal of Inorganic Materials, 2023, 38(9): 1044-1054. |
[3] | FU Yukun, ZENG Min, RAO Xianfa, ZHONG Shengwen, ZHANG Huijuan, YAO Wenli. Microwave-assisted Synthesis and Co, Al Co-modification of Ni-rich LiNi0.8Mn0.2O2 Materials for Li-ion Battery Electrode [J]. Journal of Inorganic Materials, 2021, 36(7): 718-724. |
[4] | MAO Lei, SUO Hong-Li, LIU Min, ZHANG Zi-Li, YE Shuai, MA Lin. Effect of Nb5+ -doped YBCO Film Synthesized by Low-fluorine MOD Method [J]. Journal of Inorganic Materials, 2013, 28(9): 956-960. |
[5] | TANG Han, XIA Hai-Ping. Spectra Properties and Energy Transfer of Bi/Tm Co-doped TiO2-BaO-SiO2-Ga2O3 Glasses [J]. Journal of Inorganic Materials, 2013, 28(7): 696-700. |
[6] | LU Lei, ZHONG Wei-Pan, YANG Hui. Synthesis and Characterization of Spherical LiNi0.8Co0.1Mn0.1O2 Particles with a High Tap-density [J]. Journal of Inorganic Materials, 2012, 27(3): 258-264. |
[7] | CHEN Pei-Rong, JI You-Zhang, YANG Qing. Preparation of Composite Additives Powder by Coprecipitation Method and Investgation of ZnO Varistor Ceramics [J]. Journal of Inorganic Materials, 2012, 27(12): 1277-1282. |
[8] | ZHANG Mao-Run, SUN Jing-Jing, CHEN Jing. Study on Magnetic Properties of Dy0.15Fe1.85O3 Magnetic Nanoparticles at Low Temperature [J]. Journal of Inorganic Materials, 2012, 27(11): 1174-1178. |
[9] | LIU Jian-Hua, YOU Dun, YU Mei, LI Song-Mei. Electromagnetic Properties of BaTiO3/BaFe12O19 Core/Shell Particles [J]. Journal of Inorganic Materials, 2011, 26(12): 1244-1250. |
[10] | YANG Yan, LI Sheng-Tao. CaCu3Ti4O12 Ceramics Prepared by Coprecipitation Method [J]. Journal of Inorganic Materials, 2010, 25(8): 835-839. |
[11] |
LIU Huai-Fei,LI Song-Lin,LI Qi-Lian,LI Yong-Ming,ZHOU Wu-Xi.
Preparation and Phase Stability of La2O3, Y2O3 Co-doped ZrO2 Ceramic Powder Application for Thermal Barrier Coating [J]. Journal of Inorganic Materials, 2009, 24(6): 1226-1230. |
[12] | ZHANG Hong,ZHANG Zhe,MA Guo-Qiang,ZHANG Yu-Xing,LI Zhi-Cheng. Coprecipitation Synthesis and Oxide Ionic Conductivities of Ce0.8Sm0.2O1.9-based Nanocomposite Materials [J]. Journal of Inorganic Materials, 2009, 24(2): 353-356. |
[13] | LIU Yin,QIU Tai. Synthesis and Magnetic Properties of Nanocrystalline Ni1-x ZnxFe2O4 Ferrite [J]. Journal of Inorganic Materials, 2007, 22(3): 391-394. |
[14] | CHU Ying,TANG Xin-Feng,WAN Ling,ZHAO Wen-Yu,ZHANG Qing-Jie. Synthesis of Nano-skutterudite Compound Powder by Cross-coprecipitation Method [J]. Journal of Inorganic Materials, 2006, 21(2): 298-302. |
[15] | HUANG Zhong-Mei,GUAN Jian-Guo,GAN Zhi-Ping,WANG Zhen-Jie. Template Preparation Techniques and Application of Hollow Micro- or Nano-Particles [J]. Journal of Inorganic Materials, 2005, 20(6): 1281-1287. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||