Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (4): 359-366.DOI: 10.15541/jim20230424
• RESEARCH ARTICLE • Previous Articles Next Articles
YU Man1(), GAO Rongyao2, QIN Yujun2, AI Xicheng2()
Received:
2023-09-18
Revised:
2023-11-29
Published:
2024-04-20
Online:
2023-12-19
Contact:
AI Xicheng, professor. E-mail: xcai@ruc.edu.cnAbout author:
YU Man (1989-), female, PhD. E-mail: yuman@xaau.edu.cn
Supported by:
CLC Number:
YU Man, GAO Rongyao, QIN Yujun, AI Xicheng. Influence of Upconversion Luminescent Nanoparticles on Hysteresis Effect and Ion Migration Kinetics in Perovskite Solar Cells[J]. Journal of Inorganic Materials, 2024, 39(4): 359-366.
Fig. 4 (a) UV-Vis absorption and steady-state fluorescence spectra of perovskite films deposited on quartz substrates, and (b) time resolved fluorescence spectra of four perovskite thin films
Fig. 5 J-V curves under forward and reverse scanning conditions for perovskite solar cells with champion performances of (a) Compact/PVK, (b) UCNP+Compact/PVK, (c) Compact/PVK+UCNP, and (d) UCNP+Compact/PVK+UCNP
Sample | Scan direction | Open-circuit voltage/ mV | Short-circuit current/ (mA·cm-2) | FF/% | PCE/% | HF |
---|---|---|---|---|---|---|
Compact/PVK | Reverse | 996 | 19.56 | 63.45 | 12.36 | 0.42 |
Forward | 912 | 17.89 | 44.13 | 7.20 | ||
UCNP+Compact/PVK | Reverse | 1038 | 20.37 | 0.74 | 15.65 | 0.07 |
Forward | 1045 | 19.84 | 0.70 | 14.52 | ||
Compact/PVK+UCNP | Reverse | 1034 | 20.96 | 0.75 | 16.27 | 0.05 |
Forward | 1032 | 20.39 | 0.73 | 15.37 | ||
UCNP+Compact/PVK+UCNP | Reverse | 1016 | 18.31 | 0.66 | 12.28 | 0.15 |
Forward | 976 | 17.76 | 0.60 | 10.40 |
Table 1 Photovoltaic parameters and hysteresis factors (HF) of four perovskite devices upon forward and reverse scanning conditions
Sample | Scan direction | Open-circuit voltage/ mV | Short-circuit current/ (mA·cm-2) | FF/% | PCE/% | HF |
---|---|---|---|---|---|---|
Compact/PVK | Reverse | 996 | 19.56 | 63.45 | 12.36 | 0.42 |
Forward | 912 | 17.89 | 44.13 | 7.20 | ||
UCNP+Compact/PVK | Reverse | 1038 | 20.37 | 0.74 | 15.65 | 0.07 |
Forward | 1045 | 19.84 | 0.70 | 14.52 | ||
Compact/PVK+UCNP | Reverse | 1034 | 20.96 | 0.75 | 16.27 | 0.05 |
Forward | 1032 | 20.39 | 0.73 | 15.37 | ||
UCNP+Compact/PVK+UCNP | Reverse | 1016 | 18.31 | 0.66 | 12.28 | 0.15 |
Forward | 976 | 17.76 | 0.60 | 10.40 |
Fig. S1 (a) Schematic illustration of the cs-TPT setup ](ND filter: neutral density filter, DUT: device under test, Sync.: synchronizing, Trig.: trigger, Sig.= signal); (b) Time sequences of typical cs-TPT settings (Trigger, Laser, VG, and RS)
Sample | S2(PCEreverse) | S2(PCEforward) | S2(HF) |
---|---|---|---|
Compact/PVK | 0.55956 | 0.58046 | 0.01156 |
UCNP+Compact/PVK | 0.41318 | 0.40968 | 0.01130 |
Compact/PVK+UCNP | 0.25838 | 0.33691 | 0.00810 |
UCNP+Compact/PVK+UCNP | 0.19304 | 0.96262 | 0.01451 |
Table S1 HF and variance of PCE under forward and reverse scanning conditions of cells
Sample | S2(PCEreverse) | S2(PCEforward) | S2(HF) |
---|---|---|---|
Compact/PVK | 0.55956 | 0.58046 | 0.01156 |
UCNP+Compact/PVK | 0.41318 | 0.40968 | 0.01130 |
Compact/PVK+UCNP | 0.25838 | 0.33691 | 0.00810 |
UCNP+Compact/PVK+UCNP | 0.19304 | 0.96262 | 0.01451 |
[1] |
KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131(17): 6050.
DOI PMID |
[2] |
LEE M M, TEUSCHER J, MIYASAKA T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012, 338(6107): 643.
DOI PMID |
[3] |
KIM M, JEONG J, LU H, et al. Conformal quantum dot-SnO2 layers as electron transporters for efficient perovskite solar cells. Science, 2022, 375(6578): 302.
DOI URL |
[4] |
JIANG Q, TONG J, XIAN Y, et al. Surface reaction for efficient and stable inverted perovskite solar cells. Nature, 2022, 611(7935): 278.
DOI |
[5] |
PARK J, KIM J, YUN H S, et al. Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature, 2023, 616: 724.
DOI |
[6] |
SAVENIJE T J, PONSECA C S, KUNNEMAN L, et al. Thermally activated exciton dissociation and recombination control the carrier dynamics in organometal halide perovskite. Journal of Physical Chemistry Letters, 2014, 5(13): 2189.
DOI PMID |
[7] |
SHI D, ADINOLFI V, COMIN R, et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science, 2015, 347(6221): 519.
DOI URL |
[8] |
SUM T C, MATHEWS N, XING G, et al. Spectral features and charge dynamics of lead halide perovskites: origins and interpretations. Accounts of Chemical Research, 2016, 49(2): 294.
DOI PMID |
[9] |
LI Q, ZHENG Y C, WEI Z P, et al. Halide diffusion equilibrium and its impact on efficiency evolution of perovskite solar cells. Advanced Energy Materials, 2022, 12(48): 2202982.
DOI URL |
[10] |
HE J J, LIU J X, HOU Y, et al. Surface chelation of cesium halide perovskite by dithiocarbamate for efficient and stable solar cells. Nature Communications, 2020, 11: 4237.
DOI PMID |
[11] |
SHAO Y H, XIAO Z G, BI C, et al. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nature Communications, 2014, 5: 5784.
DOI |
[12] |
LIU S, GUAN Y J, SHENG Y S, et al. A review on additives for halide perovskite solar cells. Advanced Energy Materials, 2019, 10(13): 1902492.
DOI URL |
[13] |
KANG D H, PARK N G. On the current-voltage hysteresis in perovskite solar cells: dependence on perovskite composition and methods to remove hysteresis. Advanced Materials, 2019, 31(34): 1805214.
DOI URL |
[14] |
KE W J, XIAO C X, WANG C L, et al. Employing lead thiocyanate additive to reduce the hysteresis and boost the fill factor of planar perovskite solar cells. Advanced Materials, 2016, 28(26): 5214.
DOI URL |
[15] |
LIU P Y, WANG W, LIU S M, et al. Fundamental understanding of photocurrent hysteresis in perovskite solar cells. Advanced Energy Materials, 2019, 9(13): 1803017.
DOI URL |
[16] |
FROST J M, WALSH A. What is moving in hybrid halide perovskite solar cells? Accounts of Chemical Research, 2016, 49(3): 528.
DOI PMID |
[17] |
ROTHMANN M U, LI W, ZHU Y, et al. Direct observation of intrinsic twin domains in tetragonal CH3NH3PbI3. Nature Communications, 2017, 8: 14547.
DOI |
[18] |
KENNARD R M, DAHLMAN C J, DECRESCENT R A, et al. Ferroelastic hysteresis in thin films of methylammonium lead iodide. Chemistry of Materials, 2021, 33: 298.
DOI URL |
[19] |
WEI J, ZHAO Y, LI H, et al. Hysteresis analysis based on the ferroelectric effect in hybrid perovskite solar cells. Journal of Physical Chemistry Letters, 2014, 5(21): 3937.
DOI PMID |
[20] |
MIYANO K, YANAGIDA M, TRIPATHI N, et al. Hysteresis, stability, and ion migration in lead halide perovskite photovoltaics. Journal of Physical Chemistry Letters, 2016, 7(12): 2240.
DOI PMID |
[21] |
BI E, CHEN H, XIE F, et al. Diffusion engineering of ions and charge carriers for stable efficient perovskite solar cells. Nature Communications, 2017, 8: 15330.
DOI PMID |
[22] |
XIA G Z, HUANG B Y, ZHANG Y, et al. Nanoscale insights into photovoltaic hysteresis in triple-cation mixed-halide perovskite: resolving the role of polarization and ionic migration. Advanced Materials, 2019, 31(36): 1902870.
DOI URL |
[23] |
LIAN X M, ZUO L J, CHEN B W, et al. Light-induced beneficial ion accumulation for high-performance quasi-2D perovskite solar cells. Energy Environmental Science, 2022, 15(6): 2499.
DOI URL |
[24] |
LOU F, YUAN S, WANG X, et al. Distinguishing the migration time scale of ion species in perovskite solar cells. Chemical Physics Letters, 2022, 796: 139570.
DOI URL |
[25] |
WANG H Y, ZHAO J S, LI Y S, et al. Diffusion dynamics of mobile ions hidden in transient optoelectronic measurement in planar perovskite solar cells. ACS Applied Energy Materials, 2020, 3(9): 8330.
DOI URL |
[26] |
ZHONG Y, HUFNAGEL M, THELAKKAT M, et al. Role of PCBM in the suppression of hysteresis in perovskite solar cells. Advanced Functional Materials, 2020, 30(23): 1908920.
DOI URL |
[27] |
LI J X, MENG X C, HUANG Z Q, et al. A regularity-based fullerene interfacial layer for efficient and stable perovskite solar cells via blade-coating. Advanced Functional Materials, 2022, 32(1): 2105917.
DOI URL |
[28] |
YU M, WANG H Y, ZHAO J S, et al. The influence of fullerene on hysteresis mechanism in planar perovskite solar cells. Chemical Physics Letters, 2020, 750: 137443.
DOI URL |
[29] |
LI C, WANG A, XIE L, et al. Emerging alkali metal ion (Li+, Na+, K+ and Rb+) doped perovskite films for efficient solar cells: recent advances and prospects. Journal of Materials Chemistry A, 2019, 7(42): 24150.
DOI URL |
[30] |
ZHAO Y P, YAVUZ I, WANG M H, et al. Suppressing ion migration in metal halide perovskite via interstitial doping with a trace amount of multivalent cations. Nature Materials, 2022, 21(12): 1396.
DOI |
[31] |
LIANG T, FU M, LI M, et al. Application of upconversion photoluminescent materials in perovskite solar cells: opportunities and challenges. Materials Today Energy, 2021, 21: 100740.
DOI URL |
[32] |
WANG Y, WANG H Y, HAN J, et al. The influence of structural configuration on charge accumulation, transport, recombination, and hysteresis in perovskite solar cells. Energy Technology, 2017, 5(3): 442.
DOI URL |
[33] |
WANG Y, WANG H Y, YU M, et al. Trap-limited charge recombination in intrinsic perovskite film and meso-superstructured perovskite solar cells and the passivation effect of the hole-transport material on trap states. Physical Chemistry Chemical Physics, 2015, 17(44): 29501.
DOI PMID |
[34] |
WANG Y, WU D P, FU L M, et al. Density of state determination of two types of intra-gap traps in dye-sensitized solar cell and its influence on device performance. Physical Chemistry Chemical Physics, 2014, 16(23): 11626.
DOI URL |
[35] |
KIM J Y, LEE J W, JUNG H S, et al. High-efficiency perovskite solar cells. Chemical Reviews, 2020, 120(15): 7867.
DOI PMID |
[36] |
WANG W, ZHOU J, TANG W. Passivation strategies of perovskite film defects for solar cells. Journal of Inorganic Materials, 2021, 37(2): 129.
DOI URL |
[37] |
KIM H S, JANG I H, AHN N, et al. Control of I-V hysteresis in CH3NH3PbI3 perovskite solar cell. Journal of Physical Chemistry Letters, 2015, 6(22): 4633.
DOI URL |
[38] |
NEMNES G A, BESLEAGE C, STANCU V, et al. Normal and inverted hysteresis in perovskite solar cells. Journal of Physical Chemistry C, 2017, 121(21): 11207.
DOI URL |
[39] |
YUAN S, WANG H Y, LOU F G, et al. Polarization-induced trap states in perovskite solar cells revealed by circuit-switched transient photoelectric technique. Journal of Physical Chemistry C, 2022, 126(7): 3696.
DOI URL |
[40] |
YUAN S, LOU F G, LI Y Y, et al. Targeted suppression of hysteresis effect in perovskite solar cells through the inhibition of cation migration. Applied Physics Letters, 2023, 122(13): 133502.
DOI URL |
[41] |
MIAO S, YUAN S, ZHU D, et al. Mesoporous TiO2 layer suppresses ion accumulation in perovskite solar cells. Physical Chemistry Chemical Physics, 2022, 24(35): 20689.
DOI URL |
[42] |
LI Y Y, YUAN S, MIAO S S, et al. Uncovering the influence of cation composition engineering on the ion migration kinetics in perovskite solar cells. Journal of Physical Chemistry C, 2023, 127(30): 14679.
DOI URL |
[1] | CHEN Yu, LIN Puan, CAI Bing, ZHANG Wenhua. Research Progress of Inorganic Hole Transport Materials in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(9): 991-1004. |
[2] | DING Tongshun, FENG Ping, SUN Xuewen, SHAN Husheng, LI Qi, SONG Jian. Perovskite Film Passivated by Fmoc-FF-OH and Its Photovoltaic Performance [J]. Journal of Inorganic Materials, 2023, 38(9): 1076-1082. |
[3] | FANG Wanli, SHEN Lili, LI Haiyan, CHEN Xinyu, CHEN Zongqi, SHOU Chunhui, ZHAO Bin, YANG Songwang. Effect of Film Formation Processes of NiOx Mesoporous Layer on Performance of Perovskite Solar Cells with Carbon Electrodes [J]. Journal of Inorganic Materials, 2023, 38(9): 1103-1109. |
[4] | HAN Xu, YAO Hengda, LYU Mei, LU Hongbo, ZHU Jun. Application of Single-molecule Liquid Crystal Additives in CH(NH2)2PbI3 Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(9): 1097-1102. |
[5] | ZHANG Wanwen, LUO Jianqiang, LIU Shujuan, MA Jianguo, ZHANG Xiaoping, YANG Songwang. Zirconia Spacer: Preparation by Low Temperature Spray-coating and Application in Triple-layer Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(2): 213-218. |
[6] | MA Tingting, WANG Zhipeng, ZHANG Mei, GUO Min. Performance Optimization of Ultra-long Stable Mixed Cation Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(12): 1387-1395. |
[7] | WANG Ye, JIAO Yinan, GUO Junxia, LIU Huan, LI Rui, SHANG Zixuan, ZHANG Shidong, WANG Yonghao, GENG Haichuan, HOU Denglu, ZHAO Jinjin. Optimization of Interfacial Engineering of Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(11): 1323-1330. |
[8] | JIAO Boxin, LIU Xingchong, QUAN Ziwei, PENG Yongshan, ZHOU Ruonan, LI Haimin. Performance of Perovskite solar cells Doped with L-arginine [J]. Journal of Inorganic Materials, 2022, 37(6): 669-675. |
[9] | YANG Xinyue, DONG Qingshun, ZHAO Weidong, SHI Yantao. 4-Chlorobenzylamine-based 2D/3D Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2022, 37(1): 72-78. |
[10] | LIU Wenwen, HU Zhilei, WANG Li, CAO Mengsha, ZHANG Jing, ZHANG Jing, ZHANG Shuai, YUAN Ningyi, DING Jianning. Passiviation of L-3-(4-Pyridyl)-alanine on Interfacial Defects of Perovskite Solar Cell [J]. Journal of Inorganic Materials, 2021, 36(6): 629-636. |
[11] | WANG Yanxiang, GAO Peiyang, FAN Xueyun, LI Jiake, GUO Pingchun, HUANG Liqun, SUN Jian. Effect of SnO2 Annealing Temperature on the Performance of Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2021, 36(2): 168-174. |
[12] | YU Shouwu, ZHAO Zewen, ZHAO Jinjin, XIAO Shujuan, SHI Yan, GAO Cunfa, SU Xiao, HU Yuxiang, ZHAO Zhisheng, WANG Jie, WANG Lianzhou. Research Progress in Novel In-situ Integrative Photovoltaic-storage Tandem Cells [J]. Journal of Inorganic Materials, 2020, 35(6): 623-632. |
[13] | XIONG Hao, ZHANG Bo-Xin, JIA Wei, ZHANG Qing-Hong, XIE Hua-Qing. Polymer PVP Additive for Improving Stability of Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2019, 34(1): 96-102. |
[14] | XU Shun-Jian, XIAO Zong-Hu, LUO Xiao-Rui, ZHONG Wei, LOU Yong-Ping, OU Hui. Cooperative Effect of Carbon Nanotubes and Dimethyl Sulfoxide on PEDOT:PSS Hole Transport Layer in Planar Perovskite Solar cells [J]. Journal of Inorganic Materials, 2018, 33(6): 641-647. |
[15] | ZHANG Min, WANG Zeng-Hua, ZHENG Xiao-Jia, ZHANG Wen-Hua. Structural Effect of TiO2 on the Performance of MAPbBr3 Solar Cells [J]. Journal of Inorganic Materials, 2018, 33(2): 245-250. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||