Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (11): 1323-1330.DOI: 10.15541/jim20230169
Special Issue: 【能源环境】钙钛矿(202409); 【能源环境】太阳能电池(202409)
• RESEARCH ARTICLE • Previous Articles Next Articles
WANG Ye1,3(), JIAO Yinan3, GUO Junxia2, LIU Huan3, LI Rui3, SHANG Zixuan1, ZHANG Shidong4, WANG Yonghao4, GENG Haichuan4, HOU Denglu2, ZHAO Jinjin1(
)
Received:
2023-04-06
Revised:
2023-06-30
Published:
2023-07-28
Online:
2023-07-28
Contact:
ZHAO Jinjin, professor. E-mail: jinjinzhao2012@163.comAbout author:
About author: WANG Ye (1995-), male, Master candidate. E-mail: yestruggle20@163.com
Supported by:
CLC Number:
WANG Ye, JIAO Yinan, GUO Junxia, LIU Huan, LI Rui, SHANG Zixuan, ZHANG Shidong, WANG Yonghao, GENG Haichuan, HOU Denglu, ZHAO Jinjin. Optimization of Interfacial Engineering of Perovskite Solar Cells[J]. Journal of Inorganic Materials, 2023, 38(11): 1323-1330.
Fig. 1 (a) J-V curves of PSCs and (b-d) SEM morphologies for NiOx-3, NiOx-4 and NiOx-5 “F” and “R” refer to forward scanning and reverse scanning, respectively
Fig. 3 Crystal structure and absorbance characterization of perovskite film (a)XRD pattern of MAPbI3 film; (b) UV-Vis absorption spectrum and Tauc plot of MAPbI3 film
Fig. 4 Morphologies and contact potential difference of PTF-15 MAPbI3 films under illumination and dark conditions. (a, b) Morphologies of MAPbI3 film under (a) illumination and (b) dark conditions; (c) Height distributions of MAPbI3 morphology under illumination and dark conditions; (d, e) CPD maps of MAPbI3 morphologies under (d) illumination and (e) dark; (f) Potential statistical diagram of CPD. Colorful figures are available on website
Fig. 5 In-situ characterization of the out-of-plane and in-plane ferroelectric polarization of PTF-15 MAPbI3 films under illumination and dark conditions (a, b) Morphologies of MAPbI3 film under (a) illumination and (b) dark conditions; (c) Height distributions of MAPbI3 morphologies under illumination and dark conditions; (d, e) Out-of-plane ferroelectric polarization images under (d) illumination and (e) dark conditions; (f) Out-of-plane ferroelectric polarization distributions of the topography under illumination and dark conditions; (g, h) In-plane ferroelectric polarization images under (g) illumination and (h) dark conditions; (i) In-plane ferroelectric polarization distributions of MAPbI3 film under illumination and dark conditions. Colorful figures are available on website
[1] |
HE C L, MENG Z Q, REN S X, et al. Water-ultrastable perovskite CsPbBr3 nanocrystals for fluorescence-enhanced cellular imaging. Rare Metals, 2023, 42: 1624.
DOI |
[2] | 杨帅, 徐瑜歆, 郝子坤, 等. 高效医学传感钙钛矿材料研究进展. 物理化学学报, 2023, 39(5): 2211025. |
[3] | 任书霞, 杨铮, 安帅领, 等. 高效光电调控钙钛矿量子点阻变存储性能. 物理化学学报, 2023, 39(12): 2301033. |
[4] |
LIU X, REN S, LI Z, et al. Flexible transparent high-efficiency photoelectric perovskite resistive switching memory. Advanced Functional Materials, 2022, 32(38): 2202951.
DOI URL |
[5] |
JIA C, ZHAO X, LAI Y, et al. Highly flexible, robust, stable and high efficiency perovskite solar cells enabled by van der Waals epitaxy on mica substrate. Nano Energy, 2019, 60: 476.
DOI URL |
[6] |
WANG P, ZHAO J, LIU J, et al. Stabilization of organometal halide perovskite films by SnO2 coating with inactive surface hydroxyl groups on ZnO nanorods. Journal of Power Sources, 2017, 339: 51.
DOI URL |
[7] |
REN S, SUN G, ZHAO J, et al. Electric field-induced magnetic switching in Mn: ZnO film. Applied Physics Letters, 2014, 104(23): 232406.
DOI URL |
[8] |
ZHAO J, SALLARD S, SMARSLY B M, et al. Photocatalytic performances of mesoporous TiO2 films doped with gold clusters. Journal of Materials Chemistry, 2010, 20(14): 2831.
DOI URL |
[9] |
ZHAO J, SU X, MI Z, et al. Trivalent Ni oxidation controlled through regulating lithium content to minimize perovskite interfacial recombination. Rare Metals, 2022, 41(1): 96.
DOI |
[10] |
KIM M, JEONG J, LU H, et al. Conformal quantum dot-SnO2 layers as electron transporters for efficient perovskite solar cells. Science, 2022, 375(6578): 302.
DOI URL |
[11] |
BURSCHKA A J, PELLET N, MOON S J, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013, 499(7458): 316.
DOI |
[12] |
CHEN W, WU Y, YUE Y, et al. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science, 2015, 350(6263): 944.
DOI PMID |
[13] | 查吴送, 张连萍, 文龙, 等. 溶剂工程调控钙钛矿薄膜中PbI2和PbI2(DMSO)的形成. 物理化学学报, 2022, 38(2): 2003022. |
[14] |
DONG Q, FANG Y, SHAO Y, et al. Electron-hole diffusion lengths>175 μm in solution-grown CH3NH3PbI3 single crystals. Science, 2015, 347(6225): 967.
DOI URL |
[15] |
XING G, MATHEWS N, SUN S, et al. Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science, 2013, 342(6156): 344.
DOI URL |
[16] |
ZHAO J, KONG G, CHEN S, et al. Single crystalline CH3NH3PbI3 self-grown on FTO/TiO2 substrate for high efficiency perovskite solar cells. Science Bulletin, 2017, 62(17): 1173.
DOI URL |
[17] |
DE QUILETTES D W, VORPAHL S M, STRANKS S D, et al. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science, 2015, 348(6235): 683.
DOI URL |
[18] |
WEHRENFENNIG C, EPERON G E, JOHNSTON M B, et al. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Advanced Materials, 2014, 26(10): 1584.
DOI URL |
[19] |
YUAN Y, HUANG J. Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Accounts of Chemical Research, 2016, 49(2): 286.
DOI PMID |
[20] |
STOUMAPOS C C, MALLOAKAS C D, KANATZIDIS M. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorganic Chemistry, 2013, 52(15): 9019.
DOI PMID |
[21] |
JIANG Y, WANG X, PAN A. Properties of excitons and photogenerated charge carriers in metal halide perovskites. Advanced Materials, 2019, 31(47): 1806671.
DOI URL |
[22] |
JIAO Y, YI S, WANG H, et al. Strain engineering of metal halide perovskites on coupling anisotropic behaviors. Advanced Functional Materials, 2021, 31(4): 2006243.
DOI URL |
[23] |
QIN S, YI S, XU Y, et al. Ferroic alternation in methylammonium lead triiodide perovskite. EcoMat, 2021, 3(5): e12131.
DOI URL |
[24] |
ZHAO J, WEI L, JIA C, et al. Metallic tin substitution of organic lead perovskite films for efficient solar cells. Journal of Materials Chemistry A, 2018, 6(41): 20224.
DOI URL |
[25] |
CHOI J, HAN J S, HONG K, et al. Organic-inorganic hybrid halide perovskites for memories, transistors, and artificial synapses. Advanced Materials, 2018, 30(42): 1704002.
DOI URL |
[26] |
PARK J, KIM J, YUN H S, et al. Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature, 2023, 616(7958): 724.
DOI |
[27] |
WANG Y, WU T, BARBAUD J, et al. Stabilizing heterostructures of soft perovskite semiconductors. Science, 2019, 365(6454): 687.
DOI PMID |
[28] |
WANG B, ZHANG M, CUI X, et al. Unconventional route to oxygen-vacancy-enabled highly efficient electron extraction and transport in perovskite solar cells. Angewandte Chemie International Edition, 2020, 59(4): 1611.
DOI URL |
[29] |
ZHANG C, WANG Z, YUAN S, et al. Polarized ferroelectric polymers for high-performance perovskite solar cells. Advanced Materials, 2019, 31(30): 1902222.
DOI URL |
[30] |
LIU C, CHENG Y B, GE Z. Understanding of perovskite crystal growth and film formation in scalable deposition processes. Chemical Society Reviews, 2020, 49(6): 1653.
DOI PMID |
[31] |
ARISTIDOU N, EAMES C, SANCHEZ MOLINA I, et al. Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells. Nature Communications, 2017, 8: 15218.
DOI PMID |
[32] |
LIU Z, CAO F, WANG M, et al. Observing defect passivation of the grain boundary with 2-aminoterephthalic acid for efficient and stable perovskite solar cells. Angewandte Chemie International Edition, 2020, 59(10): 4161.
DOI URL |
[33] |
ZHENG X, CHEN B, DAI J, et al. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nature Energy, 2017, 2(7): 17102.
DOI URL |
[34] |
ZHAO J, WANG P, LIU Z, et al. Controlled reaction for improved CH3NH3PbI3 transition in perovskite solar cells. Dalton Transactions, 2015, 44(40): 17841.
DOI URL |
[35] |
WANG W, ZHOU J, TANG W. Passivation strategies of perovskite film defects for solar cells. Journal of Inorganic Materials, 2022, 37(2): 129.
DOI |
[36] |
WANG Y, GAO P, FAN X, et al. Effect of SnO2 annealing temperature on the performance of perovskite solar cells. Journal of Inorganic Materials, 2021, 36(2): 168.
DOI URL |
[37] |
ZHOU Q, CAI C, XIONG Q, et al. Surface polarity regulation by relieving Fermi-level pinning with naphthalocyanine tetraimides toward efficient perovskite solar cells with improved photostability. Advanced Energy Materials, 2022, 12(27): 2201243.
DOI URL |
[38] |
WU T, WANG Y, LI X, et al. Efficient defect passivation for perovskite solar cells by controlling the electron density distribution of donor-π-acceptor molecules. Advanced Energy Materials, 2019, 9(17): 1803766.
DOI URL |
[39] |
ZHANG S, WANG H, DUAN X, et al. Printable and homogeneous NiOx hole transport layers prepared by a polymer-network gel method for large-area and flexible perovskite solar cells. Advanced Functional Materials, 2021, 31(47): 2106495.
DOI URL |
[40] |
LI Y, ZHENG J, CHEN X, et al. Realize larger grain size of CH3NH3PbI3 film with reduced non-radiative recombination for high performance perovskite solar cells via precursor colloidal size engineering. Journal of Alloys and Compounds, 2021, 886: 161300.
DOI URL |
[41] |
LUO D, SU R, ZHANG W, et al. Minimizing non-radiative recombination losses in perovskite solar cells. Nature Reviews Materials, 2020, 5(1): 44.
DOI |
[42] |
BAIKIE I, ESTRUP P. Low cost PC based scanning Kelvin probe. Review of Scientific Instruments, 1998, 69(11): 3902.
DOI URL |
[43] | HE X, WANG M, CAO F, et al. Hydrophobic long alkyl chain organic cations induced 2D/3D heterojunction for efficient and stable perovskite solar cells. Journal of Materials Science & Technology, 2022, 124: 243. |
[44] |
KIM D, YUN J H, LYM M, et al. Probing facet-dependent surface defects in MAPbI3 perovskite single crystals. The Journal of Physical Chemistry C, 2019, 123(23): 14144.
DOI URL |
[45] |
LEE D S, YUN J S, KIM J, et al. Passivation of grain boundaries by phenethylammonium in formamidinium-methylammonium lead halide perovskite solar cells. ACS Energy Letters, 2018, 3(3): 647.
DOI URL |
[46] |
NGUYEN B P, JUNG H R, KIM J, et al. Enhanced carrier transport over grain boundaries in lead-free CH3NH3Sn(I1-xBrx)3(0≤x≤1) perovskite solar cells. Nanotechnology, 2019, 30(31): 314005.
DOI URL |
[47] |
WANG P, ZHAO J, WEI L, et al. Photo-induced ferroelectric switching in perovskite CH3NH3PbI3 films. Nanoscale, 2017, 9(11): 3806.
DOI URL |
[48] |
XIA G, HUANG B, ZHANG Y, et al. Nanoscale insights into photovoltaic hysteresis in triple-cation mixed-halide perovskite: resolving the role of polarization and ionic migration. Advanced Materials, 2019, 31(36): 1902870.
DOI URL |
[1] | XIAO Zichen, HE Shihao, QIU Chengyuan, DENG Pan, ZHANG Wei, DAI Weideren, GOU Yanzhuo, LI Jinhua, YOU Jun, WANG Xianbao, LIN Liangyou. Nanofiber-modified Electron Transport Layer for Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(7): 828-834. |
[2] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[3] | CHEN Tian, LUO Yuan, ZHU Liu, GUO Xueyi, YANG Ying. Organic-inorganic Co-addition to Improve Mechanical Bending and Environmental Stability of Flexible Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(5): 477-484. |
[4] | YU Man, GAO Rongyao, QIN Yujun, AI Xicheng. Influence of Upconversion Luminescent Nanoparticles on Hysteresis Effect and Ion Migration Kinetics in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(4): 359-366. |
[5] | ZHOU Zezhu, LIANG Zihui, LI Jing, WU Congcong. Preparation of MAPbI3 Perovskite Solar Cells/Module via Volatile Solvents [J]. Journal of Inorganic Materials, 2024, 39(11): 1197-1204. |
[6] | LI Qianyuan, LI Jiwei, ZHANG Yuhan, LIU Yankang, MENG Yang, CHU Yu, ZHU Yijia, XU Nuoyan, ZHU Liang, ZHANG Chuanxiang, TAO Haijun. Enhanced Photovoltaic Performance of Perovskite Solar Cells by PbTiO3 Modification and Polarization Treatment [J]. Journal of Inorganic Materials, 2024, 39(11): 1205-1211. |
[7] | FANG Wanli, SHEN Lili, LI Haiyan, CHEN Xinyu, CHEN Zongqi, SHOU Chunhui, ZHAO Bin, YANG Songwang. Effect of Film Formation Processes of NiOx Mesoporous Layer on Performance of Perovskite Solar Cells with Carbon Electrodes [J]. Journal of Inorganic Materials, 2023, 38(9): 1103-1109. |
[8] | HAN Xu, YAO Hengda, LYU Mei, LU Hongbo, ZHU Jun. Application of Single-molecule Liquid Crystal Additives in CH(NH2)2PbI3 Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(9): 1097-1102. |
[9] | DING Tongshun, FENG Ping, SUN Xuewen, SHAN Husheng, LI Qi, SONG Jian. Perovskite Film Passivated by Fmoc-FF-OH and Its Photovoltaic Performance [J]. Journal of Inorganic Materials, 2023, 38(9): 1076-1082. |
[10] | CHEN Yu, LIN Puan, CAI Bing, ZHANG Wenhua. Research Progress of Inorganic Hole Transport Materials in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(9): 991-1004. |
[11] | DU Jianyu, GE Chen. Recent Progress in Optoelectronic Artificial Synapse Devices [J]. Journal of Inorganic Materials, 2023, 38(4): 378-386. |
[12] | ZHANG Wanwen, LUO Jianqiang, LIU Shujuan, MA Jianguo, ZHANG Xiaoping, YANG Songwang. Zirconia Spacer: Preparation by Low Temperature Spray-coating and Application in Triple-layer Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(2): 213-218. |
[13] | MA Tingting, WANG Zhipeng, ZHANG Mei, GUO Min. Performance Optimization of Ultra-long Stable Mixed Cation Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(12): 1387-1395. |
[14] | JIAO Boxin, LIU Xingchong, QUAN Ziwei, PENG Yongshan, ZHOU Ruonan, LI Haimin. Performance of Perovskite solar cells Doped with L-arginine [J]. Journal of Inorganic Materials, 2022, 37(6): 669-675. |
[15] | YANG Xinyue, DONG Qingshun, ZHAO Weidong, SHI Yantao. 4-Chlorobenzylamine-based 2D/3D Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2022, 37(1): 72-78. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||