Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (9): 1103-1109.DOI: 10.15541/jim20230002
Special Issue: 【能源环境】钙钛矿(202310); 【能源环境】太阳能电池(202310)
• RESEARCH LETTER • Previous Articles Next Articles
FANG Wanli1,2(), SHEN Lili2, LI Haiyan2, CHEN Xinyu2, CHEN Zongqi2, SHOU Chunhui3, ZHAO Bin1(), YANG Songwang1,2,4()
Received:
2023-01-01
Revised:
2023-04-11
Published:
2023-09-20
Online:
2023-05-04
Contact:
ZHAO Bin, professor. E-mail: zhaobin@usst.edu.cn;About author:
FANG Wanli (1997-), female, Master candidate. E-mail: fangwl08@163.com
Supported by:
CLC Number:
FANG Wanli, SHEN Lili, LI Haiyan, CHEN Xinyu, CHEN Zongqi, SHOU Chunhui, ZHAO Bin, YANG Songwang. Effect of Film Formation Processes of NiOx Mesoporous Layer on Performance of Perovskite Solar Cells with Carbon Electrodes[J]. Journal of Inorganic Materials, 2023, 38(9): 1103-1109.
Fig. 1 (a) Schematic illustration and (b) work function of the device, cross-sectional SEM images of C-PSCs: (c) device A, (d) device B and (e) device C, and (f) element distribution in the direction of the white arrow in (e)
Fig. 3 SEM images of (a) ZrO2 mesoporous film, (b) spin- coated and (c) screen-printed NiOx films, and (d) PL spectra for sample A (ZrO2/MAPbI3), sample B (ZrO2/NiOx (spin-coated)/ MAPbI3), and sample C (ZrO2/NiOx(screen-printed)/MAPbI3)
Fig. 5 (a-c) J-V curves and (d) incident photon-to-electron conversion efficiency (IPCE) spectra and the integrated current density curves of different devices (a) Forward and reverse scans of device A, B and C; (b) Different thicknesses of NiOx layer; (c) The optimum cells of device A and device C; Colorful figures are available on website
Fig. 6 (a) J-V curves under dark conditions, (b) light-intensity dependence of VOC (solid line: linear fitting), (c) transient photovoltage (TPV) decay curves, (d) transient photocurrent (TPC) decay curves, (e) Nyquist plots measured in the dark, and (f) Mott-Schottky plots for device A and device C; Colorful figures are available on website
Sample | VOC/V | JSC/(mA·cm-2) | FF/% | PCE/% | ||||
---|---|---|---|---|---|---|---|---|
Reverse | Forward | Reverse | Forward | Reverse | Forward | Reverse | Forward | |
Device A | 0.779 | 0.764 | 23.45 | 23.38 | 63.60 | 55.47 | 11.62 | 9.91 |
Device B | 0.822 | 0.820 | 23.62 | 23.56 | 60.66 | 60.26 | 11.78 | 11.64 |
Device C | 0.904 | 0.903 | 23.57 | 23.56 | 63.29 | 62.98 | 13.49 | 13.40 |
Table S1 Photovoltaic parameters for different devices with an aperture area of 0.07 cm2 under 1 sun (100 mW·cm-2) illumination
Sample | VOC/V | JSC/(mA·cm-2) | FF/% | PCE/% | ||||
---|---|---|---|---|---|---|---|---|
Reverse | Forward | Reverse | Forward | Reverse | Forward | Reverse | Forward | |
Device A | 0.779 | 0.764 | 23.45 | 23.38 | 63.60 | 55.47 | 11.62 | 9.91 |
Device B | 0.822 | 0.820 | 23.62 | 23.56 | 60.66 | 60.26 | 11.78 | 11.64 |
Device C | 0.904 | 0.903 | 23.57 | 23.56 | 63.29 | 62.98 | 13.49 | 13.40 |
Sample | VOC/V | JSC/(mA·cm-2) | FF/% | PCE/% |
---|---|---|---|---|
NiOx (0.8 μm) | 0.898 | 22.36 | 61.66 | 12.38 |
NiOx (1.6 μm) | 0.932 | 22.68 | 62.87 | 13.28 |
NiOx (2.4 μm) | 0.939 | 20.86 | 54.43 | 10.66 |
Table S2 Photovoltaic parameters of devices with different thicknesses of screen-printed NiOx layer
Sample | VOC/V | JSC/(mA·cm-2) | FF/% | PCE/% |
---|---|---|---|---|
NiOx (0.8 μm) | 0.898 | 22.36 | 61.66 | 12.38 |
NiOx (1.6 μm) | 0.932 | 22.68 | 62.87 | 13.28 |
NiOx (2.4 μm) | 0.939 | 20.86 | 54.43 | 10.66 |
Device | VOC/V | JSC/(mA·cm-2) | FF/% | PCE/% |
---|---|---|---|---|
Device A | 0.840 | 23.39 | 61.00 | 11.95 |
Device C | 0.910 | 25.04 | 64.13 | 14.63 |
Table S3 Photovoltaic parameters of device A and C
Device | VOC/V | JSC/(mA·cm-2) | FF/% | PCE/% |
---|---|---|---|---|
Device A | 0.840 | 23.39 | 61.00 | 11.95 |
Device C | 0.910 | 25.04 | 64.13 | 14.63 |
[1] |
KIM M, JEONG J, LU H, et al. Conformal quantum dot-SnO2 layers as electron transporters for efficient perovskite solar cells. Science, 2022, 375(6578): 302.
DOI URL |
[2] |
SAMANTARAY M R, RANA N K, KUMAR A, et al. Stability study of large-area perovskite solar cells fabricated with copper as low-cost metal contact. J. Energy Res., 2022, 46(2): 1250.
DOI URL |
[3] |
YUE M, YUE H, ANYI M, et al. Application of lead acetate additive for printable perovskite solar cell. J. Inorg. Mater., 2022, 37(2): 197.
DOI |
[4] |
LAURA M G, DANIEL R, FRANKLIN J. Current status and trends of carbon-based electrodes for fully solution-processed perovskite solar cells. J. Energy Chem., 2021, 68: 222.
DOI URL |
[5] |
LIU S, HUANG W, LIAO P, et al. 17% efficient printable mesoscopic PIN metal oxide framework perovskite solar cells using cesium-containing triple cation perovskite. J. Mater. Chem. A, 2017, 5(44): 22952.
DOI URL |
[6] |
JAYAN K D, SEBASTIAN V. Comprehensive device modelling and performance analysis of MASnI3 based perovskite solar cells with diverse ETM, HTM and back metal contacts. Sol. Energy, 2021, 217: 40.
DOI URL |
[7] |
WANG J, ZHENG Z, ZU Y, et al. A tandem organic photovoltaic cell with 19.6% efficiency enabled by light distribution control. Adv. Mater., 2021, 33(39): 2102787.
DOI URL |
[8] |
WANG H, HUANG Z, XIAO S, et al. An in situ bifacial passivation strategy for flexible perovskite solar module with mechanical robustness by roll-to-roll fabrication. J. Mater. Chem. A, 2021, 9(9): 5759.
DOI URL |
[9] |
XU X, LIU Z, ZUO Z, et al. Hole selective NiO contact for efficient perovskite solar cells with carbon electrode. Nano Lett., 2015, 15(4): 2402.
DOI PMID |
[10] |
CAO K, ZUO Z, CUI J, et al. Efficient screen printed perovskite solar cells based on mesoscopic TiO2/Al2O3/NiO/carbon architecture. Nano Energy, 2015, 17: 171.
DOI URL |
[11] |
LIU X, REN S, LI Z, et al. Flexible transparent high-efficiency photoelectric perovskite resistive switching memory. Adv. Funct. Mater., 2022, 32(38): 2202951.
DOI URL |
[12] |
TAO L, ZHANG Y, CHEN H, et al. Printable commercial carbon based mesoscopic perovskite solar cell using NiO/graphene as hole-transport materials. ECS J. Solid State Sci. Technol., 2021, 10(10): 105003.
DOI |
[13] |
BHANDARI S, ROY A, ALI M S, et al. Cotton soot derived carbon nanoparticles for NiO supported processing temperature tuned ambient perovskite solar cells. Sci. Rep., 2021, 11: 23388.
DOI PMID |
[14] |
JIANG F, CHOY W C H, LI X, et al. Post-treatment-free solution-processed non-stoichiometric NiOx nanoparticles for efficient hole-transport layers of organic optoelectronic devices. Adv. Mater., 2015, 27(18): 2930.
DOI URL |
[15] |
LEE J H, JIN I S, JUNG J W. Binary-mixed organic electron transport layers for planar heterojunction perovskite solar cells with high efficiency and thermal reliability. Chem. Eng. J., 2021, 420: 129678.
DOI URL |
[16] |
HOU X M, HU Y, LIU H W, et al. Effect of guanidinium on mesoscopic perovskite solar cells. J. Mater. Chem. A, 2017, 5(1): 73.
DOI URL |
[17] |
ZHAO J J, SU X, MI Z, et al. Trivalent Ni oxidation controlled through regulating lithium content to minimize perovskite interfacial recombination. Rare Metals, 2022, 41(1): 96.
DOI |
[18] | LIU Z, SUN B, LIU X, et al. Efficient carbon-based CsPbBr3 inorganic perovskite solar cells by using Cu-phthalocyanine as hole transport material. Nano-Micro Lett., 2018, 10(2): 34. |
[19] |
TSUJI R, BOGACHUK D, LUO B, et al. Activation of weak monochromic photocurrents by white light irradiation for accurate IPCE measurements of carbon-based multi-porous-layered-electrode perovskite solar cells. Electrochemistry, 2020, 88(5): 418.
DOI URL |
[20] |
LIU X, CHENG Y, LIU C, et al. 20.7% highly reproducible inverted planar perovskite solar cells with enhanced fill factor and eliminated hysteresis. Energy Environ. Sci., 2019, 12(5): 1622.
DOI URL |
[21] |
LIAO P, ZHAO X, LI G, et al. A new method for fitting current-voltage curves of planar heterojunction perovskite solar cells. Nano-Micro Lett., 2018, 10: 5.
DOI PMID |
[22] |
KE W, FANG G, WAN J, et al. Efficient hole-blocking layer-free planar halide perovskite thin-film solar cells. Nat. Commun., 2015, 6: 6700.
DOI PMID |
[23] |
WANG Y, MAHMOUDI T, HAHN Y B. Highly stable and efficient perovskite solar cells based on FAMA-perovskite-Cu:NiO composites with 20.7% efficiency and 80.5% fill factor. Adv. Energy Mater., 2020, 10(27): 2000967.
DOI URL |
[24] |
LEGUY A M A, FROST J M, MCMAHON A P, et al. The dynamics of methylammonium ions in hybrid organic-inorganic perovskite solar cells. Nat. Commun., 2015, 6: 7124.
DOI PMID |
[25] |
CAI C, ZHOU K, GUO H, et al. Enhanced hole extraction by NiO nanoparticles in carbon-based perovskite solar cells. Electrochim. Acta, 2019, 312: 100.
DOI URL |
[26] |
LIU S, LI S, WU J, et al. Amide additives induced a Fermi level shift to improve the performance of hole-conductor-free, printable mesoscopic perovskite solar cells. J. Phy. Chem. Lett., 2019, 10(21): 6865.
DOI URL |
[27] |
LI X, ZHANG W, GUO X, et al. Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells. Science, 2022, 375(6579): 434.
DOI PMID |
[28] |
ZHOU Y, ZHANG X, LU X, et al. Promoting the hole extraction with Co3O4 nanomaterials for efficient carbon-based CsPbI2Br perovskite solar cells. Solar RRL, 2019, 3(4): 1800315.
DOI URL |
[29] |
CHEN X, LU L, GU D, et al. Chlorine management of a carbon counter electrode for high performance printable perovskite solar cells. J. Mater. Chem. C, 2021, 9(27): 8615.
DOI URL |
[1] | CHEN Yu, LIN Puan, CAI Bing, ZHANG Wenhua. Research Progress of Inorganic Hole Transport Materials in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(9): 991-1004. |
[2] | HU Zhongliang, FU Yuntian, JIANG Meng, WANG Lianjun, JIANG Wan. Thermal Stability of Nb/Mg3SbBi Interface [J]. Journal of Inorganic Materials, 2023, 38(8): 931-937. |
[3] | LIU Jian, WANG Lingkun, XU Baoliang, ZHAO Qian, WANG Yaoxuan, DING Yi, ZHANG Shengtai, DUAN Tao. Nd-doped ZrSiO4 Ceramics: Synthesis in Molten Salt at Low Temperature, Phase Evolution and Chemical Stability [J]. Journal of Inorganic Materials, 2023, 38(8): 910-916. |
[4] | XIAO Yani, LYU Jianan, LI Zhenming, LIU Mingyang, LIU Wei, REN Zhigang, LIU Hongjing, YANG Dongwang, YAN Yonggao. Hygrothermal Stability of Bi2Te3-based Thermoelectric Materials [J]. Journal of Inorganic Materials, 2023, 38(7): 800-806. |
[5] | WANG Bo, YU Jian, LI Cuncheng, NIE Xiaolei, ZHU Wanting, WEI Ping, ZHAO Wenyu, ZHANG Qingjie. Service Stability of Gd/Bi0.5Sb1.5Te3 Thermo-electro-magnetic Gradient Composites [J]. Journal of Inorganic Materials, 2023, 38(6): 663-670. |
[6] | WANG Shiyi, FENG Aihu, LI Xiaoyan, YU Yun. Pb (II) Adsorption Process of Fe3O4 Supported Ti3C2Tx [J]. Journal of Inorganic Materials, 2023, 38(5): 521-528. |
[7] | LI Yue, ZHANG Xuliang, JING Fangli, HU Zhanggui, WU Yicheng. Growth and Property of Ce3+-doped La2CaB10O19 Crystal [J]. Journal of Inorganic Materials, 2023, 38(5): 583-588. |
[8] | MA Rundong, GUO Xiong, SHI Kaixuan, AN Shengli, WANG Ruifen, GUO Ruihua. S-type Heterojunction of MOS2/g-C3N4: Construction and Photocatalysis [J]. Journal of Inorganic Materials, 2023, 38(10): 1176-1182. |
[9] | WAN Jiabao, ZHANG Minghui, SU Huaiyu, CAO Zhijun, LIU Xuechao, XIE Jiansheng, WANG Xiangyuan, SHI Yinghui, WANG Liang, LEI Shuijin. Structural, Thermal, and Optical Properties of GeO2-La2O3-TiO2 Glasses [J]. Journal of Inorganic Materials, 2023, 38(10): 1230-1236. |
[10] | WANG Hongning, HUANG Li, QING Jiang, MA Tengzhou, HUANG Weiqiu, CHEN Ruoyu. Mesoporous Organic-inorganic Hybrid Siliceous Hollow Spheres: Synthesis and VOCs Adsorption [J]. Journal of Inorganic Materials, 2022, 37(9): 991-1000. |
[11] | JIANG Yiyi, SHEN Min, SONG Banxia, LI Nan, DING Xianghuan, GUO Leyi, MA Guoqiang. Effect of Dual-functional Electrolyte Additive on High Temperature and High Voltage Performance of Li-ion Battery [J]. Journal of Inorganic Materials, 2022, 37(7): 710-716. |
[12] | LUO Shilin, ZHANG Shengtai, XU Baoliang, WANG Lingkun, DUAN Siyihan, DING Yi, ZHAO Qian, DUAN Tao. Immobilizing Behavior of Trivalent Actinide Nuclides by YIG Ceramics [J]. Journal of Inorganic Materials, 2022, 37(7): 757-763. |
[13] | LIU Dingwei, ZENG Jiangtao, ZHENG Liaoying, MAN Zhenyong, RUAN Xuezheng, SHI Xue, LI Guorong. High Piezoelectric Property and Low Electric Field-strain Hysteresis of BiAlO3-doped PZT Ceramics [J]. Journal of Inorganic Materials, 2022, 37(12): 1365-1370. |
[14] | YANG Xinyue, DONG Qingshun, ZHAO Weidong, SHI Yantao. 4-Chlorobenzylamine-based 2D/3D Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2022, 37(1): 72-78. |
[15] | GUO Meng, ZHANG Fengnian, MIAO Yang, LIU Yufeng, YU Jun, GAO Feng. Preparation and Electrical Properties of High Entropy La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3 Perovskite Ceramics Powder [J]. Journal of Inorganic Materials, 2021, 36(4): 431-435. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||