Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (9): 1097-1102.DOI: 10.15541/jim20220777
Special Issue: 【能源环境】钙钛矿(202310); 【能源环境】太阳能电池(202310)
• RESEARCH ARTICLE • Previous Articles Next Articles
HAN Xu(), YAO Hengda, LYU Mei, LU Hongbo, ZHU Jun()
Received:
2022-12-29
Revised:
2023-03-08
Published:
2023-09-20
Online:
2023-04-11
Contact:
ZHU Jun, professor. E-mail: jzhu@hfut.edu.cnAbout author:
HAN Xu (1999-), male, Master candidate. E-mail: hanxu0050@163.com
Supported by:
CLC Number:
HAN Xu, YAO Hengda, LYU Mei, LU Hongbo, ZHU Jun. Application of Single-molecule Liquid Crystal Additives in CH(NH2)2PbI3 Perovskite Solar Cells[J]. Journal of Inorganic Materials, 2023, 38(9): 1097-1102.
Sample | VOC/V | JSC/(mA·cm-2) | FF /% | PCE/% |
---|---|---|---|---|
Control | 1.056 | 23.73 | 80.07 | 20.08 |
5CB-0.1 | 1.065 | 23.64 | 80.61 | 20.29 |
5CB-0.2 | 1.086 | 24.17 | 80.96 | 21.27 |
5CB-0.3 | 1.069 | 24.09 | 80.69 | 20.83 |
Table 1 Photovoltaic parameters of FAPbI3 solar cells with different concentrations of 5CB in the precursor
Sample | VOC/V | JSC/(mA·cm-2) | FF /% | PCE/% |
---|---|---|---|---|
Control | 1.056 | 23.73 | 80.07 | 20.08 |
5CB-0.1 | 1.065 | 23.64 | 80.61 | 20.29 |
5CB-0.2 | 1.086 | 24.17 | 80.96 | 21.27 |
5CB-0.3 | 1.069 | 24.09 | 80.69 | 20.83 |
Fig. 7 (a) Dark J-V curves of hole-only devices, and (b) Nyquist plots for FAPbI3 solar cells of Control and 5CB-x Colorful figures are available on website
[1] |
LUO X, LIN X, GAO F, et al. Recent progress in perovskite solar cells: from device to commercialization. Sci. China Chem., 2022, 65(12): 2369.
DOI |
[2] |
RONG Y, HU Y, MEI A, et al. Challenges for commercializing perovskite solar cells. Science, 2018, 361(6408): eaat8235.
DOI URL |
[3] |
DONG Y, ZOU Y, SONG J, et al. Recent progress of metal halide perovskite photodetectors. J. Mater. Chem. C, 2017, 5(44): 11369.
DOI URL |
[4] |
KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc., 2009, 131(17): 6050.
DOI PMID |
[5] |
KIN M, JEONG J, LU H Z, et al. Conformal quantum dot-SnO2 layers as electron transporters for efficient perovskite solar cells. Science, 2022, 375(6578): 302.
DOI URL |
[6] | NREL. Best Research-cell Efficiencies[2022-12-10]. https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies-rev220630.pdf. |
[7] |
HU Y, GAO L, SU H, et al. Amino acid-based low-dimensional management for enhanced perovskite solar cells, Sol. RRL, 2022, 6(7): 2200168.
DOI URL |
[8] |
LUO D, SU R, ZHANG W, et al. Minimizing non-radiative recombination losses in perovskite solar cells, Nat. Rev. Mater., 2020, 5(1): 44.
DOI |
[9] | YANG L, FENG L, LIU Z, et al. Record-efficiency flexible perovskite solar cells enabled by multifunctional organic ions interface passivation. Adv. Mater., 2022, 34(24): 220168. |
[10] |
ZHU J, QIAN Y, LI Z, et al. Defect healing in FAPb(I1-xBrx)3 perovskites: multifunctional fluorinated sulfonate surfactant anchoring enables >21% modules with improved operation stability. Adv. Energy Mater., 2022, 12(20): 2200632.
DOI URL |
[11] |
LI X, WU X, LI B, et al. Modulating the deep-level defects and charge extraction for efficient perovskite solar cells with high fill factor over 86%. Energy Environ. Sci., 2022, 15(11): 4813.
DOI URL |
[12] | CHEN C, WANG X, LI Z, et al. Polyacrylonitrile-coordinated perovskite solar cell with open-circuit voltage exceeding 1.23 V. Angew. Chem. Int. Ed., 2021, 61(8): e202113932. |
[13] |
DENG X, XIE L, WANG S, et al. Ionic liquids engineering for high-efficiency and stable perovskite solar cells. Chem. Eng. J., 2020, 398: 125594.
DOI URL |
[14] |
WANG S, WANG A, DENG X, et al. Lewis acid/base approach for efficacious defect passivation in perovskite solar cells. J. Mater. Chem. A, 2020, 8(25): 12201.
DOI URL |
[15] |
CHEN J, PARK N. Materials and methods for interface engineering toward stable and efficient perovskite solar cells. ACS. Energy Lett., 2020, 5(8): 2742.
DOI URL |
[16] |
KATO T, MIZOSHITA N, KISHIMOTO K. Functional liquid- crystalline assemblies: self-organized soft materials. Angew. Chem. Int. Ed., 2006, 45(1): 38.
DOI URL |
[17] |
ARIVUNITHI V, REDDY S, SREE V, et al. Efficiency exceeding 20% in perovskite solar cells with side-chain liquid crystalline polymer-doped perovskite absorbers. Adv. Energy Mater., 2018, 8(30): 1801637.
DOI URL |
[18] |
ARIVUNITHI V, PARK H, REDDY S, et al. A simple engineering strategy with side chain liquid crystal polymers in perovskite absorbers for high efficiency and stability. Org. Electron., 2021, 88: 105987.
DOI URL |
[19] |
XIA X, PENG J, WAN Q, et al. Functionalized ionic liquid-crystal additive for perovskite solar cells with high efficiency and excellent moisture stability. ACS Appl. Mater. Interf., 2021, 13(15): 17677.
DOI URL |
[20] | HUANG Y, LEI X, HE T, et al. Recent progress on formamidinium- dominated perovskite photovoltaics. Adv. Energy Mater., 2021, 12(4): 21006. |
[21] |
CORREA-BAENA J, SALIBA M, BUONASSISI T, et al. Promises and challenges of perovskite solar cells. Science, 2017, 358(6364): 739.
DOI URL |
[22] |
TAO L, WAGN Z, DUAN K, et al. Liquid crystal molecule as “binding agent” enables superior stable perovskite solar cells with high fill factor. Sol. RRL, 2019, 3(8): 1900125.
DOI URL |
[23] | DU X, ZHANG L, CHEN R, et al. Spontaneous interface healing by a dynamic liquid-crystal transition for high-performance perovskite solar cells. Adv. Mater., 2022, 34(49): 22073632. |
[24] |
CHEN L, CHEN J, WANG C, et al. High-light-tolerance PbI2 boosting the stability and efficiency of perovskite solar cells. ACS Appl. Mater. Interf., 2021, 13(21): 24692.
DOI URL |
[25] |
LI Y, CUI K, XU X, et al. Understanding the essential role of PbI2 films in a high-performance lead halide perovskite photodetector. J. Phys. Chem. C, 2020, 124(28): 15107.
DOI URL |
[26] |
WU Y, WANG Q, CHEN Y, et al. Stable perovskite solar cells with 25.17% efficiency enabled by improving crystallization and passivating defect synergistically. Energy Environ. Sci., 2022, 15(11): 4700.
DOI URL |
[27] |
DUIJINSTEE E, BALL J, CONE V, et al. Toward understanding space-charge limited current measurements on metal halide perovskites, ACS Energy Lett., 2020, 5(2): 376.
DOI URL |
[28] |
BUBE R. Trap density determination by space-charge-limited currents. J. Chem. Phys., 1962, 33(5): 1733.
DOI URL |
[29] |
MAO P, ZHOU Q, JIN Z, et al. Efficiency-enhanced planar perovskite solar cells via an isopropanol/ethanol mixed solvent process. ACS Appl. Mater. Interf., 2016, 8(36): 23837.
DOI URL |
[1] | FANG Wanli, SHEN Lili, LI Haiyan, CHEN Xinyu, CHEN Zongqi, SHOU Chunhui, ZHAO Bin, YANG Songwang. Effect of Film Formation Processes of NiOx Mesoporous Layer on Performance of Perovskite Solar Cells with Carbon Electrodes [J]. Journal of Inorganic Materials, 2023, 38(9): 1103-1109. |
[2] | DING Tongshun, FENG Ping, SUN Xuewen, SHAN Husheng, LI Qi, SONG Jian. Perovskite Film Passivated by Fmoc-FF-OH and Its Photovoltaic Performance [J]. Journal of Inorganic Materials, 2023, 38(9): 1076-1082. |
[3] | CHEN Yu, LIN Puan, CAI Bing, ZHANG Wenhua. Research Progress of Inorganic Hole Transport Materials in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(9): 991-1004. |
[4] | ZHANG Wanwen, LUO Jianqiang, LIU Shujuan, MA Jianguo, ZHANG Xiaoping, YANG Songwang. Zirconia Spacer: Preparation by Low Temperature Spray-coating and Application in Triple-layer Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(2): 213-218. |
[5] | WANG Ye, JIAO Yinan, GUO Junxia, LIU Huan, LI Rui, SHANG Zixuan, ZHANG Shidong, WANG Yonghao, GENG Haichuan, HOU Denglu, ZHAO Jinjin. Optimization of Interfacial Engineering of Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(11): 1323-1330. |
[6] | JIAO Boxin, LIU Xingchong, QUAN Ziwei, PENG Yongshan, ZHOU Ruonan, LI Haimin. Performance of Perovskite solar cells Doped with L-arginine [J]. Journal of Inorganic Materials, 2022, 37(6): 669-675. |
[7] | YANG Xinyue, DONG Qingshun, ZHAO Weidong, SHI Yantao. 4-Chlorobenzylamine-based 2D/3D Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2022, 37(1): 72-78. |
[8] | LIU Wenwen, HU Zhilei, WANG Li, CAO Mengsha, ZHANG Jing, ZHANG Jing, ZHANG Shuai, YUAN Ningyi, DING Jianning. Passiviation of L-3-(4-Pyridyl)-alanine on Interfacial Defects of Perovskite Solar Cell [J]. Journal of Inorganic Materials, 2021, 36(6): 629-636. |
[9] | WANG Yanxiang, GAO Peiyang, FAN Xueyun, LI Jiake, GUO Pingchun, HUANG Liqun, SUN Jian. Effect of SnO2 Annealing Temperature on the Performance of Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2021, 36(2): 168-174. |
[10] | YU Shouwu, ZHAO Zewen, ZHAO Jinjin, XIAO Shujuan, SHI Yan, GAO Cunfa, SU Xiao, HU Yuxiang, ZHAO Zhisheng, WANG Jie, WANG Lianzhou. Research Progress in Novel In-situ Integrative Photovoltaic-storage Tandem Cells [J]. Journal of Inorganic Materials, 2020, 35(6): 623-632. |
[11] | XIONG Hao, ZHANG Bo-Xin, JIA Wei, ZHANG Qing-Hong, XIE Hua-Qing. Polymer PVP Additive for Improving Stability of Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2019, 34(1): 96-102. |
[12] | XU Shun-Jian, XIAO Zong-Hu, LUO Xiao-Rui, ZHONG Wei, LOU Yong-Ping, OU Hui. Cooperative Effect of Carbon Nanotubes and Dimethyl Sulfoxide on PEDOT:PSS Hole Transport Layer in Planar Perovskite Solar cells [J]. Journal of Inorganic Materials, 2018, 33(6): 641-647. |
[13] | ZHANG Min, WANG Zeng-Hua, ZHENG Xiao-Jia, ZHANG Wen-Hua. Structural Effect of TiO2 on the Performance of MAPbBr3 Solar Cells [J]. Journal of Inorganic Materials, 2018, 33(2): 245-250. |
[14] | WANG Wei-Qi, ZHENG Hui-Feng, LU Guan-Hong, LIU Yang-Qiao, SUN Jing, GAO Lian. Recent Progress on Applications of Nano Metal Oxides in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2016, 31(9): 897-907. |
[15] | LIU Chang, YUAN Shuai, ZHANG Hai-Liang, CAO Bing-Qiang, WU Li-Li, YIN Long-Wei. p-type CuI Films Grown by Iodination of Copper and Their Application As Hole Transporting Layers for Inverted Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2016, 31(4): 358-364. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||