Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (4): 449-456.DOI: 10.15541/jim230501
Special Issue: 【能源环境】钙钛矿(202409)
• Research Letter • Previous Articles
YUE Zihao1,2(), YANG Xiaotu1, ZHANG Zhengliang1, DENG Ruixiang1(
), ZHANG Tao1(
), SONG Lixin1,2
Received:
2023-10-30
Revised:
2023-12-05
Published:
2024-04-20
Online:
2024-04-09
Contact:
DENG Ruixiang. E-mail: dengruixiang@mail.sic.ac.cn;About author:
YUE Zihao (1994-), male, Master candidate. E-mail: yuezh@shanghaitech.edu.cn
CLC Number:
YUE Zihao, YANG Xiaotu, ZHANG Zhengliang, DENG Ruixiang, ZHANG Tao, SONG Lixin. Effect of Pb2+ on the Luminescent Performance of Borosilicate Glass Coated CsPbBr3 Perovskite Quantum Dots[J]. Journal of Inorganic Materials, 2024, 39(4): 449-456.
Fig. 2 Crystal structures and optical properties of PQDs@glass at different temperatures for 2 h (a) XRD patterns; (b) PL spectra; (c) PLQY and PL intensity; (d) Fluorescence lifetime curves Colorful images are available on website
Fig. 3 TEM characterization and size distribution analyses of PQDs@glass (a, b) TEM images before (a) and after (b) heat-treatment; (c) High-resolution TEM image; (d, e) TEM image and EDS mappings; (f) Schematic diagram of the relationship between size and band gap of CsPbBr3 QDs; (g-k) TEM images and size statistics
Code | SiO2 | H3BO3 | ZnO | CaF2 | Cs2CO3 | PbBr2 | NaBr | PbO |
---|---|---|---|---|---|---|---|---|
Pb-1 | 85 | 170 | 55 | 5 | 16 | 4 | 17 | 0.5 |
Pb-2 | 85 | 170 | 55 | 5 | 16 | 5 | 15 | 0.5 |
Pb-3 | 85 | 170 | 55 | 5 | 16 | 6 | 13 | 0.5 |
Pb-4 | 85 | 170 | 55 | 5 | 16 | 7 | 11 | 0.5 |
Table 1 Component regulation of Pb2+ ions (all data in molar ratios)
Code | SiO2 | H3BO3 | ZnO | CaF2 | Cs2CO3 | PbBr2 | NaBr | PbO |
---|---|---|---|---|---|---|---|---|
Pb-1 | 85 | 170 | 55 | 5 | 16 | 4 | 17 | 0.5 |
Pb-2 | 85 | 170 | 55 | 5 | 16 | 5 | 15 | 0.5 |
Pb-3 | 85 | 170 | 55 | 5 | 16 | 6 | 13 | 0.5 |
Pb-4 | 85 | 170 | 55 | 5 | 16 | 7 | 11 | 0.5 |
Fig. 5 Structural characterization of PQDs@glass at different Pb2+ concentrations (a, b) FT-IR and XPS spectra, and (c) the ratio of bridging to non-bridging oxygen bonds; Colorful figures are available on website
Fig. 6 Stability experiments of PQDs@glass (a, b) Variations in PL intensity and FWHM of water resistance (a) and UV stability (b), and (c) experimental results of thermal cycling stability
[1] |
SU W, TENG Q, YUAN F. All-thermally evaporated perovskite LEDs toward high-resolution active-matrix displays. Matter, 2023, 6(8): 2539.
DOI URL |
[2] |
KIM D, PARK S, CHOI B C, et al. The tetravalent manganese activated SrLaMgTaO6 phosphor for w-LED applications. Materials Research Bulletin, 2018, 97: 115.
DOI URL |
[3] |
CHRISTENSEN A, GRAHAM S. Thermal effects in packaging high power light emitting diode arrays. Applied Thermal Engineering, 2009, 29(2/3): 364.
DOI URL |
[4] |
WEN Z, XIE F, CHOY W C H. Stability of electroluminescent perovskite quantum dots light-emitting diode. Nano Select, 2021, 3(3): 505.
DOI URL |
[5] |
WANG S, BI C, YUAN J, et al. Original core-shell structure of cubic CsPbBr3@Amorphous CsPbBrx perovskite quantum dots with a high blue photoluminescence quantum yield of over 80%. ACS Energy Letters, 2017, 3(1): 245.
DOI URL |
[6] |
RAIN G, YAZDANI N, BOEHME S C, et al. Ultra-narrow room-temperature emission from single CsPbBr3 perovskite quantum dots. Nature Communications, 2022, 13(1): 2587.
DOI |
[7] |
ZHOU X, CHANG Q, XIANG G, et al. A and B sites dual substitution by Na+ and Cu2+ co-doping in CsPbBr3 quantum dots to achieve bright and stable blue light emitting diodes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2023, 300: 122773.
DOI URL |
[8] |
WU W, ZHAO C, HU M, et al. CsPbBr3 perovskite quantum dots grown within Fe-doped zeolite X with improved stability for sensitive NH3 detection. Nanoscale, 2023, 15(12): 5705.
DOI URL |
[9] |
LIN C Q, LIU M L, YANG Z, et al. Mn2+ doped CsPbBr3 perovskite quantum dots with high quantum yield and stability for flexible array displays. Journal of Solid State Chemistry, 2023, 327: 124295.
DOI URL |
[10] |
LIU S, SHAO G, DING L, et al. Sn-doped CsPbBr3 QDs glasses with excellent stability and optical properties for WLED. Chemical Engineering Journal, 2019, 361: 937.
DOI URL |
[11] |
HUANG D, BO J, ZHENG R, et al. Luminescence and stability enhancement of CsPbBr3 perovskite quantum dots through surface sacrificial coating. Advanced Optical Materials, 2021, 9(16): 2100474.
DOI URL |
[12] |
ZOU L, LI X, YANG M, et al. ZnPc/CsPbBr3 QDs collaborative interface modification to improve the performance of CsPbBr3 perovskite solar cells. Solar Energy Materials and Solar Cells, 2023, 251: 112157.
DOI URL |
[13] |
XU Y, YU L, PENG K, et al. Ultra-stable perovskite quantum dot composites encapsulated with mesoporous SiO2 and PbBr(OH) for white light-emitting diodes. Luminescence, 2023, 38(5): 536.
DOI URL |
[14] |
REN J, LI T, ZHOU X, et al. Encapsulating all-inorganic perovskite quantum dots into mesoporous metal organic frameworks with significantly enhanced stability for optoelectronic applications. Chemical Engineering Journal, 2019, 358: 30.
DOI URL |
[15] |
LV W, LI L, XU M, et al. Improving the stability of metal halide perovskite quantum dots by encapsulation. Advanced Materials, 2019, 31(28): 1900682.
DOI URL |
[16] |
LI S, NIE L, MA S, et al. Environmentally friendly CsPbBr3 QDs multicomponent glass with super-stability for optoelectronic devices and up-converted lasing. Journal of the European Ceramic Society, 2020, 40(8): 3270.
DOI URL |
[17] |
YANG B, MEI S, ZHU Y, et al. Precipitation promotion of highly emissive and stable CsPbX3 (Cl, Br, I) perovskite quantum dots in borosilicate glass with alkaline earth modification. Ceramics International, 2023, 49(4): 6720.
DOI URL |
[18] |
TONG Y, WANG Q, LIU X, et al. The promotion of TiO2 induction for finely tunable self-crystallized CsPbX3(X = Cl, Br and I) nanocrystal glasses for LED backlighting display. Chemical Engineering Journal, 2022, 429: 132391.
DOI URL |
[19] |
SHAO G, LIU S, DING L, et al. KxCs1-xPbBr3 NCs glasses possessing super optical properties and stability for white light emitting diodes. Chemical Engineering Journal, 2019, 375: 122031.
DOI URL |
[20] |
LIU S, HE M, DI X, et al. Precipitation and tunable emission of cesium lead halide perovskites (CsPbX3, X = Br, I) QDs in borosilicate glass. Ceramics International, 2018, 44(4): 4496.
DOI URL |
[21] |
LIU J, SHEN L, CHEN Y, et al. Highly luminescent and ultrastable cesium lead halide perovskite nanocrystal glass for plant-growth lighting engineering. Journal of Materials Chemistry C, 2019, 7(43): 13606.
DOI URL |
[22] |
STOCH P, STOCH A. Structure and properties of Cs containing borosilicate glasses studied by molecular dynamics simulations. Journal of Non-Crystalline Solids, 2015, 411: 106.
DOI URL |
[23] |
LIU Q, FENG L, SUN Y, et al. Effects of phosphate glass on Cs+ immobilization in geopolymer glass-ceramics. Ceramics International, 2023, 49(4): 6545.
DOI URL |
[24] |
YANG B, MEI S, HE H, et al. Lead oxide enables lead volatilization pollution inhibition and phase purity modulation in perovskite quantum dots embedded borosilicate glass. Journal of the European Ceramic Society, 2022, 42(1): 258.
DOI URL |
[25] |
KAUR N, KHANNA A, G NZ LEZ-BARRIUSO M, et al. Effects of Al3+, W6+, Nb5+ and Pb2+ on the structure and properties of borotellurite glasses. Journal of Non-Crystalline Solids, 2015, 429: 153.
DOI URL |
[26] |
OTHMAN H, TOPPER B, ELKHOLY H, et al. Structural, spectroscopic, and radiation shielding properties of Pb2+‐doped borate and phosphate glasses. International Journal of Applied Glass Science, 2023, 14(3): 408.
DOI URL |
[27] |
LI P, TIAN Y, HUANG F, et al. Highly efficient photostimulated luminescence of Pb2+ doped SrAl2O4:Eu2+, Dy3+ borate glass for long-term stable optical information storage. Journal of the European Ceramic Society, 2022, 42(12): 5065.
DOI URL |
[28] |
EL-EGILI K, DOWEIDAR H, MOUSTAFA Y M, et al. Structure and some physical properties of PbO-P2O5 glasses. Physica B: Condensed Matter, 2003, 339(4): 237.
DOI URL |
[29] |
CHENG Y, XIAO H, GUO W, et al. Structure and crystallization kinetics of PbO-B2O3 glasses. Ceramics International, 2007, 33(7): 1341.
DOI URL |
[1] | QU Mujing, ZHANG Shulan, ZHU Mengmeng, DING Haojie, DUAN Jiaxin, DAI Henglong, ZHOU Guohong, LI Huili. CsPbBr3@MIL-53 Nanocomposite Phosphors: Synthesis, Properties and Applications in White LEDs [J]. Journal of Inorganic Materials, 2024, 39(9): 1035-1043. |
[2] | FAN Jiashun, XIA Donglin, LIU Baoshun. Temperature Dependent Transient Photoconductive Response of CsPbBr3 NCs [J]. Journal of Inorganic Materials, 2023, 38(8): 893-900. |
[3] | LUO Shuwen, MA Mingsheng, LIU Feng, LIU Zhifu. Corrosion Behavior and Mechanism of LTCC Materials in Ca-B-Si System [J]. Journal of Inorganic Materials, 2023, 38(5): 553-560. |
[4] | SHI Yanlei, SUN Niefeng, XU Chengyan, WANG Shujie, LIN Peng, MA Chunlei, XU Senfeng, WANG Wei, CHEN Chunmei, FU Lijie, SHAO Huimin, LI Xiaolan, WANG Yang, QIN Jingkai. Thermal Field of 6-inch Indium Phosphide Single Crystal Growth by Semi-sealed Czochralski Method [J]. Journal of Inorganic Materials, 2023, 38(3): 335-342. |
[5] | LU Chenhui, GE Wanyin, SONG Panpan, ZHANG Panfeng, XU Meimei, ZHANG Wei. Luminescence Property of Eu Doped SiAlON Phosphors for White LEDs [J]. Journal of Inorganic Materials, 2023, 38(1): 97-104. |
[6] | PANG Libin, WANG Deping. Drug Carrier Based on Mesoporous Borosilicate Glass Microspheres: Preparation and Performance [J]. Journal of Inorganic Materials, 2022, 37(7): 780-786. |
[7] | ZHANG Fengjuan, HAN Boning, ZENG Haibo. Perovskite Quantum Dot Photovoltaic and Luminescent Concentrator Cells: Current Status and Challenges [J]. Journal of Inorganic Materials, 2022, 37(2): 117-128. |
[8] | SHI Siqi, SUN Shiyu, MA Shuchang, ZOU Xinxin, QIAN Quan, LIU Yue. Detection Method on Data Accuracy Incorporating Materials Domain Knowledge [J]. Journal of Inorganic Materials, 2022, 37(12): 1311-1320. |
[9] | DU Aochen, DU Qiyuan, LIU Xin, YANG Yimin, XIA Chenyang, ZOU Jun, LI Jiang. Ce:YAG Transparent Ceramics Enabling High Luminous Efficacy for High-power LEDs/LDs [J]. Journal of Inorganic Materials, 2021, 36(8): 883-892. |
[10] | XIAO Xiang, GUO Shaoke, DING Cheng, ZHANG Zhijie, HUANG Hairui, XU Jiayue. CsPbBr3@TiO2 Core-shell Structure Nanocomposite as Water Stable and Efficient Visible-light-driven Photocatalyst [J]. Journal of Inorganic Materials, 2021, 36(5): 507-512. |
[11] | WANG Zhaowu, JI Haipeng, WANG Feixiang, HOU Xinghui, YI Shasha, ZHOU Ying, CHEN Deliang. Valence State Control of Manganese in MgAl2O4:Mn4+ Phosphor by Varying the Al2O3 Crystal Form [J]. Journal of Inorganic Materials, 2021, 36(5): 513-520. |
[12] | TIAN Jianjian, MA Xia, WANG Min, YAO Heliang, HUA Zile, ZHANG Lingxia. Sn Quantum Dots for Electrocatalytic Reduction of CO2 to HCOOH [J]. Journal of Inorganic Materials, 2021, 36(12): 1337-1342. |
[13] | SHU Mengyang, LU Jialin, ZHANG Zhijie, SHEN Tao, XU Jiayue. CsPbBr3 Perovskite Quantum Dots/Ultrathin C3N4 Nanosheet 0D/2D Composite: Enhanced Stability and Photocatalytic Activity [J]. Journal of Inorganic Materials, 2021, 36(11): 1217-1222. |
[14] | XIAO Yumin, Li Bin, QIN Lizhao, LIN Hua, LI Qing, LIAO Bin. Efficient Preparation of CuGeO3 with Controllable Morphology Using CuCl2 as Copper Source [J]. Journal of Inorganic Materials, 2021, 36(1): 69-74. |
[15] | JI Haipeng, ZHANG Zongtao, XU Jian, TANABE Setsuhisa, CHEN Deliang, XIE Rongjun. Advance in Red-emitting Mn4+-activated Oxyfluoride Phosphors [J]. Journal of Inorganic Materials, 2020, 35(8): 847-856. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||