Journal of Inorganic Materials ›› 2026, Vol. 41 ›› Issue (2): 159-176.DOI: 10.15541/jim20250148
• REVIEW • Previous Articles Next Articles
SUN Lian(
), ZHANG Leilei(
), XUE Zexu, WU Kun, CHEN Ye, LI Zhiyuan, WANG Lukai, WANG Zungang(
)
Received:2025-04-08
Revised:2025-05-05
Published:2025-06-27
Online:2025-06-27
Contact:
ZHANG Leilei, assistant professor. E-mail: zhangleilei@sklnbcpc.cn;About author:SUN Lian (1993-), male, assistant professor. E-mail: sunlian12@alumni.nudt.edu.cn
Supported by:CLC Number:
SUN Lian, ZHANG Leilei, XUE Zexu, WU Kun, CHEN Ye, LI Zhiyuan, WANG Lukai, WANG Zungang. Research Progress on Zero-dimensional Metal Halide Scintillators towards Radiation Detection Applications[J]. Journal of Inorganic Materials, 2026, 41(2): 159-176.
Fig. 2 Crystal structures of several typical 0D metal halides[13-18] CsSnCl3[13]; Cs2ZrCl6[14]; Cs3Cu2I5[15]; A2SbCl5[16]; Rb7Sb3Cl16[17]; A3Bi2I9[18]
Fig. 4 Formation and luminescence mechanism of STEs[20,25 -26] (a) Self-trapping represented by a ball interacting with a rubber sheet[25]; (b) Schematic of typical STEs process (GS represents ground state, FE represents free exciton state, FC represents free carrier state, STE represents self-trapped exciton state, Eg represents bandgap energy, Eb represents exciton binding energy, Est represents self-trapping energy, Ed represents lattice deformation energy, and EPL represents emission energy)[26]; (c) Schematic of the luminescence processes in 0D perovskites (LD represents lattice distortion, EPL,S represents singlet state emission energy, and EPL,T represents triplet state emission energy)[20]
Fig. 6 Pb-based 0D metal halides[44,46,49] (a, b) Crystal structures of (a) CsPbBr3 and (b) Cs4PbBr6; (c) Photo of large-scale CsPbBr3@Cs4PbBr6[44]; (d) PL spectra of Cs4PbBr6-xClx single crystal and application for X-ray imaging[49]; (e) CIE chromaticity coordinates (0.14, 0.19) of the blue emission from (C9NH20)7(PbCl4)Pb3Cl11·CH3CN single crystals[46]
Fig. 7 Cu-based 0D metal halides[56,59,66 -67] (a) Crystal structure of Cs3Cu2I5[56]; (b) As-grown 7 mm diameter Cs3Cu2I5 crystal ingot, a polished sample, and 137Cs gamma-ray spectra of ϕ7 mm×1 mm Cs3Cu2I5 single crystal[59]; (c) Photograph of colloidal solution of Cs3Cu2X5 (X=Cl, Br, I) nanocrystals (NCs) in hexane and their thin films under UV light (λ=254 nm)[66]; (d) An ideal model method used for quantitative analysis of structural deformation for Cs3Cu2X5[67]
Fig. 8 Mn-based 0D metal halides[76,78 -81] (a) Crystal structure of Cs3MnBr5[76]; (b) Photography of flexible Cs3MnBr5@PDMS film under ambient light, UV light and bending, with X-ray images of chip using Cs3MnBr5@PDMS film[78]; (c) Illustration of the closest Mn-Mn distance and luminescent efficiency for the selected 0D Mn2+-based metal halides[79]; (d) Images of a (C38H34P2)MnBr4 single crystal under daylight and UV light[80]; (e) Illustration of bulky molecules at A site in A2MnBr4, and images of a (Gua)2MnBr4 bulk single crystal under ambient light and UV irradiation (365 nm)[81]
Fig. 9 Other 0D metal halides[86,99,105] (a) Crystal structure of Cs3.2K0.8SnBr6 determined by Rietveld refinement, change in a and c lattice parameters upon Cs+ substitution by Rb+ and K+, and image of Cs4-xAxSn(Br,I)6 powders under 365 nm UV light[86]; (b) Radioluminescence (RL)/PL spectra of Gua3SbCl6 powders as a function of temperature[99]; (c) Picture of 12-mm diameter as-grown Cs4EuBr6 single crystal and 137Cs pulse height spectra measured with Cs4EuBr6[105]
Fig. 10 Applications of 0D metal halides in radiation detection fields[60,112,118,122,127,129] (a) Crystal structure and X-ray radioluminescence of (PPN)2SbCl5[112]; (b) Optical images of Cs3Cu2Cl5 films, and schematic diagram of the sample upright and attached on the Cs3Cu2Cl5 film[118]; (c) Comparison of Cs3Cu2I5 and other scintillators for γ-ray dosimetry[122];(d) Crystal structure, picture of as-grown crystal and pulse height spectra of Cs3Cu2I5:Tl[60]; (e) Neutron detection properties of Cs3Cu2I5:6Li[127]; (f) Crystal structure and photos of (C19H34N)2MnBr4 under β-ray irradiation[129]
| Type | Luminescence emission peak/nm | Light yield/(ph·MeV-1) | Decay time/ns | Ref. |
|---|---|---|---|---|
| Cs3Cu2I5:Mn | 445a | 95772a | 3a | [ |
| (C3N3H11O)2PbBr6·4H2O | 568b | - | 15.4c | [ |
| Cs4PbBr6 | 523b | 19000b | 179.6c | [ |
| CsPbBr3@Cs4PbBr6 | 523b | 64000b | 2.1c | [ |
| CsPbBr5Cl | 518b | ~4426b | 0.62c | [ |
| bMOF⊃MAPbBr3 | 517c | - | 37.7c | [ |
| Cs3Cu2I5:Tl | 440b | 87000a | 807.5a | [ |
| [AEPipz]CuBr3·Br·H2O | 500c | 62400b | 1.2×105a | [ |
| Cs3Cu2I5 single crystal | 436b | 32695a | 39a | [ |
| (TBA)CuBr2 | 498c | 24134b | 2.3×105a | [ |
| (Bmpip)2Cu2Br4 | ~650b | 16000b | 56.2a (241Am) | [ |
| [BzTPP]2Cu2I4 | 529c | 27706b | 1.9×103c | [ |
| (C8H20N)2Cu2Br4 | 468b | 91300b | 1.4×106c | [ |
| Cs3MnI5 | 540c | 33600b | 4.0×105c | [ |
| (C10H16N)2MnBr4 | 518c | - | 3.3×105c | [ |
| (C38H34P2)MnBr4 | 517b | ~80000b | 3.2×105c | [ |
| (Gua)2MnBr4 | 520b | 21061b | 2.0×108b | [ |
| (ETP)2MnBr4 | 520b | ~35000±2000b | 3.0×105c | [ |
| Mn(ttpo)Br2 | - | 12840b | 6×105c | [ |
Table 1 Scintillation properties of typical 0D metal halides
| Type | Luminescence emission peak/nm | Light yield/(ph·MeV-1) | Decay time/ns | Ref. |
|---|---|---|---|---|
| Cs3Cu2I5:Mn | 445a | 95772a | 3a | [ |
| (C3N3H11O)2PbBr6·4H2O | 568b | - | 15.4c | [ |
| Cs4PbBr6 | 523b | 19000b | 179.6c | [ |
| CsPbBr3@Cs4PbBr6 | 523b | 64000b | 2.1c | [ |
| CsPbBr5Cl | 518b | ~4426b | 0.62c | [ |
| bMOF⊃MAPbBr3 | 517c | - | 37.7c | [ |
| Cs3Cu2I5:Tl | 440b | 87000a | 807.5a | [ |
| [AEPipz]CuBr3·Br·H2O | 500c | 62400b | 1.2×105a | [ |
| Cs3Cu2I5 single crystal | 436b | 32695a | 39a | [ |
| (TBA)CuBr2 | 498c | 24134b | 2.3×105a | [ |
| (Bmpip)2Cu2Br4 | ~650b | 16000b | 56.2a (241Am) | [ |
| [BzTPP]2Cu2I4 | 529c | 27706b | 1.9×103c | [ |
| (C8H20N)2Cu2Br4 | 468b | 91300b | 1.4×106c | [ |
| Cs3MnI5 | 540c | 33600b | 4.0×105c | [ |
| (C10H16N)2MnBr4 | 518c | - | 3.3×105c | [ |
| (C38H34P2)MnBr4 | 517b | ~80000b | 3.2×105c | [ |
| (Gua)2MnBr4 | 520b | 21061b | 2.0×108b | [ |
| (ETP)2MnBr4 | 520b | ~35000±2000b | 3.0×105c | [ |
| Mn(ttpo)Br2 | - | 12840b | 6×105c | [ |
| [1] |
ZHENG Z, WEI Q, TONG Y, et al. Effect of Zr4+ co-doping on neutron/gamma discrimination of Cs2LaLiBr6:Ce crystals. Journal of Inorganic Materials, 2024, 39(5): 539.
DOI URL |
| [2] |
JANA A, CHO S, PATIL S A, et al. Perovskite: scintillators, direct detectors, and X-ray imagers. Materials Today, 2022, 55: 110.
DOI URL |
| [3] |
NIKL M, YOSHIKAWA A. Recent R&D trends in inorganic single-crystal scintillator materials for radiation detection. Advanced Optical Materials, 2015, 3(4): 463.
DOI URL |
| [4] | SHEN Y Q, SHI Y, PAN Y B, et al. Fabrication and 2D-mapping of Pr: Lu3Al5O12 scintillator ceramics with high light yield and fast decay time. Journal of Inorganic Materials, 2014, 29(5): 534. |
| [5] |
GLODO J, WANG Y, SHAWGO R, et al. New developments in scintillators for security applications. Physics Procedia, 2017, 90: 285.
DOI URL |
| [6] | DI FULVIO A, SHIN T H, HAMEL M C, et al. Digital pulse processing for NaI(Tl) detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 806: 69. |
| [7] |
HAWRAMI R, ARIESANTI E, FARSONI A, et al. Growth and evaluation of improved CsI:Tl and NaI:Tl scintillators. Crystals, 2022, 12(11): 1517.
DOI URL |
| [8] |
BIZARRI G, DORENBOS P. Charge carrier and exciton dynamics in LaBr3:Ce3+ scintillators: experiment and model. Physical Review B, 2007, 75(18): 184302.
DOI URL |
| [9] |
MOSZYŃSKI M, NASSALSKI A, SYNTFELD-KAŻUCH A, et al. Temperature dependences of LaBr3(Ce), LaCl3(Ce) and NaI(Tl) scintillators. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 568(2): 739.
DOI URL |
| [10] |
GUO S, LIU K, LIN Z, et al. Temperature dependence of Ce luminescence characteristics in LaBr3:Ce crystal. Journal of Luminescence, 2025, 277: 120956.
DOI URL |
| [11] |
ZHOU L, LIAO J F, KUANG D B. An overview for zero-dimensional broadband emissive metal-halide single crystals. Advanced Optical Materials, 2021, 9(17): 2100544.
DOI URL |
| [12] |
WELLS H L. Über die cäsium- und kalium-bleihalogenide. Zeitschrift fur Anorganische Chemie, 1893, 3(1): 195.
DOI URL |
| [13] |
PAUL D K, HOSSAIN A K M A. A comprehensive DFT + U investigation of electrical, optical, and structural properties of doped CsSnCl3 perovskite: unveiling optoelectronic potential. Computational Materials Science, 2024, 231: 112585.
DOI URL |
| [14] |
CHEN B, GUO Y, WANG Y, et al. Multiexcitonic emission in zero-dimensional Cs2ZrCl6:Sb3+ perovskite crystals. Journal of the American Chemical Society, 2021, 143(42): 17599.
DOI URL |
| [15] |
TSUJI M, SASASE M, IIMURA S, et al. Room-temperature solid-state synthesis of Cs3Cu2I5 thin films and formation mechanism for its unique local structure. Journal of the American Chemical Society, 2023, 145(21): 11650.
DOI URL |
| [16] |
SUN C, DENG Z, LI Z, et al. Achieving near-unity photoluminescence quantum yields in organic-inorganic hybrid antimony (III) chlorides with the [SbCl5] geometry. Angewandte Chemie International Edition, 2023, 62(10): e202216720.
DOI URL |
| [17] |
ZHANG B, PINCHETTI V, ZITO J, et al. Isolated [SbCl6]3- octahedra are the only active emitters in Rb7Sb3Cl16 nanocrystals. ACS Energy Letters, 2021, 6(11): 3952.
DOI URL |
| [18] |
ECKHARDT K, BON V, GETZSCHMANN J, et al. Crystallographic insights into (CH3NH3)3(Bi2I9): a new lead-free hybrid organic-inorganic material as a potential absorber for photovoltaics. Chemical Communications, 2016, 52(14): 3058.
DOI PMID |
| [19] |
DING M, WU Q, SHEN Y, et al. (C8H7N2O2)2[Bi2Br8]·2H2O and (C8H7N2O2)6[Bi2Cl10]Cl2·2H2O: exploring birefringent crystals in hybrid halide systems. Inorganic Chemistry, 2024, 63(21): 9701.
DOI URL |
| [20] |
LI M, XIA Z. Recent progress of zero-dimensional luminescent metal halides. Chemical Society Reviews, 2021, 50(4): 2626.
DOI PMID |
| [21] |
LIU J, LI M, HAN Q, et al. Theoretical investigation of the structural stability, electronic and optical properties of the double perovskite Cs2ZrX6 (X=Cl, Br, I). Materials Science in Semiconductor Processing, 2024, 171: 107984.
DOI URL |
| [22] |
HAN D, SHI H, MING W, et al. Unraveling luminescence mechanisms in zero-dimensional halide perovskites. Journal of Materials Chemistry C, 2018, 6(24): 6398.
DOI URL |
| [23] |
HOANG T B, MOSES A F, ZHOU H L, et al. Observation of free exciton photoluminescence emission from single wurtzite GaAs nanowires. Applied Physics Letters, 2009, 94(13): 133105.
DOI URL |
| [24] |
ZHANG Y, TU D, WANG L, et al. Transition metal ion-doped cesium lead halide perovskite nanocrystals: doping strategies and luminescence design. Materials Chemistry Frontiers, 2024, 8(1): 192.
DOI URL |
| [25] |
SMITH M D, KARUNADASA H I. White-light emission from layered halide perovskites. Accounts of Chemical Research, 2018, 51(3): 619.
DOI PMID |
| [26] |
LI S, LUO J, LIU J, et al. Self-trapped excitons in all-inorganic halide perovskites: fundamentals, status, and potential applications. The Journal of Physical Chemistry Letters, 2019, 10(8): 1999.
DOI URL |
| [27] |
MURRAY R B, MEYER A. Scintillation response of activated inorganic crystals to various charged particles. Physical Review, 1961, 122(3): 815.
DOI URL |
| [28] |
BIZARRI G. Scintillation mechanisms of inorganic materials: from crystal characteristics to scintillation properties. Journal of Crystal Growth, 2010, 312(8): 1213.
DOI URL |
| [29] |
YAO Q, LI J, LI X, et al. Achieving a record scintillation performance by micro-doping a heterovalent magnetic ion in Cs3Cu2I5 single-crystal. Advanced Materials, 2023, 35(44): 2304938.
DOI URL |
| [30] |
TONGUC B T, ARSLAN H, AL-BURIAHI M S. Studies on mass attenuation coefficients, effective atomic numbers and electron densities for some biomolecules. Radiation Physics and Chemistry, 2018, 153: 86.
DOI URL |
| [31] |
DORENBOS P, HAAS J, EIJK C. Non-proportionality in the scintillation response and the energy resolution obtainable with scintillation crystals. IEEE Transactions on Nuclear Science, 1995, 42(6): 2190.
DOI URL |
| [32] |
MOSZYŃSKI M, SYNTFELD-KAŻUCH A, SWIDERSKI L, et al. Energy resolution of scintillation detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 805: 25.
DOI URL |
| [33] | LECOQ P, KORZNIK M. Scintillator developments for high energy physics and medical imaging. 1999 IEEE Nuclear Science Symposium and Medical Imaging Conference, Seattle, 1999, 1: 1-5. |
| [34] |
RONDA C. Scintillators for medical imaging. Optical Materials: X, 2024, 22: 100293.
DOI URL |
| [35] |
TANG Y, DENG M, LIU Q, et al. Reducing luminescence intensity and suppressing irradiation-induced darkening of Bi4Ge3O12 by Ce-doping for radiation detection. Advanced Optical Materials, 2024, 12(2): 2301332.
DOI URL |
| [36] |
WANG J X, SHEKHAH O, BAKR O M, et al. Energy transfer- based X-ray imaging scintillators. Chem, 2025, 11(1): 102273.
DOI URL |
| [37] |
YIN J, ZHANG Y, BRUNO A, et al. Intrinsic lead ion emissions in zero-dimensional Cs4PbBr6 nanocrystals. ACS Energy Letters, 2017, 2(12): 2805.
DOI URL |
| [38] |
NIKL M, MIHOKOVA E, NITSCH K, et al. Photoluminescence of Cs4PbBr6 crystals and thin films. Chemical Physics Letters, 1999, 306(5): 280.
DOI URL |
| [39] |
AKKERMAN Q A, PARK S, RADICCHI E, et al. Nearly monodisperse insulator Cs4PbX6 (X=Cl, Br, I) nanocrystals, their mixed halide compositions, and their transformation into CsPbX3 nanocrystals. Nano Letters, 2017, 17(3): 1924.
DOI URL |
| [40] |
BAO Z, TSENG Y J, YOU W, et al. Efficient luminescence from CsPbBr3 nanoparticles embedded in Cs4PbBr6. The Journal of Physical Chemistry Letters, 2020, 11(18): 7637.
DOI URL |
| [41] |
SAIDAMINOV M I, ALMUTLAQ J, SARMAH S, et al. Pure Cs4PbBr6: highly luminescent zero-dimensional perovskite solids. ACS Energy Letters, 2016, 1(4): 840.
DOI URL |
| [42] |
ZHANG H, LIAO Q, WU Y, et al. Pure zero-dimensional Cs4PbBr6 single crystal rhombohedral microdisks with high luminescence and stability. Physical Chemistry Chemical Physics, 2017, 19(43): 29092.
DOI URL |
| [43] |
YIN J, YANG H, SONG K, et al. Point defects and green emission in zero-dimensional perovskites. The Journal of Physical Chemistry Letters, 2018, 9(18): 5490.
DOI URL |
| [44] |
CAO F, YU D, MA W, et al. Shining emitter in a stable host: design of halide perovskite scintillators for X-ray imaging from commercial concept. ACS Nano, 2020, 14(5): 5183.
DOI PMID |
| [45] |
CUI B B, HAN Y, HUANG B, et al. Locally collective hydrogen bonding isolates lead octahedra for white emission improvement. Nature Communications, 2019, 10: 5190.
DOI |
| [46] |
ZHOU C, LIN H, WORKU M, et al. Blue emitting single crystalline assembly of metal halide clusters. Journal of the American Chemical Society, 2018, 140(41): 13181.
DOI PMID |
| [47] |
PENG G, AN B, CHEN H, et al. Self-organizing pixelated Cs4PbBr6 scintillator plate for large-area, ultra-flexible, high spatial resolution and stable X-Ray imaging. Advanced Optical Materials, 2023, 11(1): 2201751.
DOI URL |
| [48] |
XU Q, WANG J, SHAO W, et al. A solution-processed zero-dimensional all-inorganic perovskite scintillator for high resolution gamma-ray spectroscopy detection. Nanoscale, 2020, 12(17): 9727.
DOI PMID |
| [49] |
WU X, ZHOU Q, WU H, et al. Cs4PbBr6-xClx single crystals with tunable emission for X-ray detection and imaging. The Journal of Physical Chemistry C, 2021, 125(48): 26619.
DOI URL |
| [50] |
WU H, RAN P, YAO L, et al. Confinement of methylammonium lead bromide nanocrystals in metal-organic frameworks as a stable scintillator for high-performance X-ray imaging. Chemical Engineering Journal, 2024, 491: 152098.
DOI URL |
| [51] |
SHI W, ZHANG X, MATRAS-POSTOLEK K, et al. Mn-derived Cs4PbX6 nanocrystals with stable and tunable wide luminescence for white light-emitting diodes. Journal of Materials Chemistry C, 2022, 10(10): 3886.
DOI URL |
| [52] |
QIU Y, MA Z, DAI G, et al. Doped 0D Cs4PbCl6 single crystals featuring full-visible-region colorful luminescence. Journal of Materials Chemistry C, 2022, 10(16): 6227.
DOI URL |
| [53] | LI Y, CHEN L, GAO R, et al. Nanosecond and highly sensitive scintillator based on all-inorganic perovskite single crystals. ACS Applied Materials & Interfaces, 2022, 14(1): 1489. |
| [54] |
HAN J, LI Y, SHEN P, et al. Pressure-induced free exciton emission in a quasi-zero-dimensional hybrid lead halide. Angewandte Chemie International Edition, 2024, 63(1): e202316348.
DOI URL |
| [55] | CHEN S, GAO J, CHANG J, et al. Family of highly luminescent pure ionic copper (I) bromide based hybrid materials. ACS Applied Materials & Interfaces, 2019, 11(19): 17513. |
| [56] |
JUN T, SIM K, IIMURA S, et al. Lead-free highly efficient blue-emitting Cs3Cu2I5 with 0D electronic structure. Advanced Materials, 2018, 30(43): 1804547.
DOI URL |
| [57] | YUAN D. Air-stable bulk halide single-crystal scintillator Cs3Cu2I5 by melt growth: intrinsic and Tl doped with high light yield. ACS Applied Materials & Interfaces, 2020, 12(34): 38333. |
| [58] |
STAND L, RUTSTROM D, KOSCHAN M, et al. Crystal growth and scintillation properties of pure and Tl-doped Cs3Cu2I5. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 991: 164963.
DOI URL |
| [59] |
CHENG S, BEITLEROVA A, KUCERKOVA R, et al. Zero-dimensional Cs3Cu2I5 perovskite single crystal as sensitive X-ray and γ-ray scintillator. Physica Status Solidi (RRL) - Rapid Research Letters, 2020, 14(11): 2000374.
DOI URL |
| [60] |
CHENG S, NIKL M, BEITLEROVA A, et al. Ultrabright and highly efficient all-inorganic zero-dimensional perovskite scintillators. Advanced Optical Materials, 2021, 9(13): 2100460.
DOI URL |
| [61] |
WANG Q, ZHOU Q, NIKL M, et al. Highly resolved X-Ray imaging enabled by In(I) doped perovskite-like Cs3Cu2I5 single crystal scintillator. Advanced Optical Materials, 2022, 10(11): 2200304.
DOI URL |
| [62] |
HU Y, YAN X, ZHOU L, et al. Improved energy transfer in Mn-doped Cs3Cu2I5 microcrystals induced by localized lattice distortion. The Journal of Physical Chemistry Letters, 2022, 13(46): 10786.
DOI URL |
| [63] |
HAPOSAN T, ARRAMEL A, MAULIDA P Y D, et al. All-inorganic copper-halide perovskites for large-Stokes shift and ten-nanosecond-emission scintillators. Journal of Materials Chemistry C, 2024, 12(7): 2398.
DOI URL |
| [64] |
HUNYADI M, SAMU G F, CSIGE L, et al. Scintillator of polycrystalline perovskites for high-sensitivity detection of charged-particle radiations. Advanced Functional Materials, 2022, 32(48): 2206645.
DOI URL |
| [65] |
YANG Q, WEI H, LI G, et al. Spectral adjustable Re-Cs3Cu2I5 nanocrystal-in-glass composite with long-term stability. Chemical Engineering Journal, 2024, 483: 149288.
DOI URL |
| [66] |
LIAN L, ZHENG M, ZHANG W, et al. Efficient and reabsorption-free radioluminescence in Cs3Cu2I5 nanocrystals with self-trapped excitons. Advanced Science, 2020, 7(11): 2000195.
DOI URL |
| [67] |
ZHU W, LI R, LIU X, et al. Photophysical properties of copper halides with strongly confined excitons and their high-performance X-ray imaging. Advanced Functional Materials, 2024, 34(26): 2316449.
DOI URL |
| [68] | LIN N, WANG X, ZHANG H Y, et al. Zero-dimensional copper(I) halide microcrystals as highly efficient scintillators for flexible X-ray imaging. ACS Applied Materials & Interfaces, 2024, 16(31): 41165. |
| [69] |
YAO Q, LI J, LI X, et al. High-quality Cs3Cu2I5 single-crystal is a fast-decaying scintillator. Advanced Optical Materials, 2022, 10(23): 2201161.
DOI URL |
| [70] |
LIAN L, WANG X, ZHANG P, et al. Highly luminescent zero-dimensional organic copper halides for X-ray scintillation. The Journal of Physical Chemistry Letters, 2021, 12(29): 6919.
DOI URL |
| [71] | XU T, LI Y, NIKL M, et al. Lead-free zero-dimensional organic-copper (I) halides as stable and sensitive X-ray scintillators. ACS Applied Materials & Interfaces, 2022, 14(12): 14157. |
| [72] |
LIN N, WANG R C, ZHANG S Y, et al. 0D hybrid cuprous halide as an efficient light emitter and X-ray scintillator. Laser & Photonics Reviews, 2023, 17(12): 2300427.
DOI URL |
| [73] |
SU B, JIN J, HAN K, et al. Ceramic wafer scintillation screen by utilizing near-unity blue-emitting lead-free metal halide (C8H20N)2Cu2Br4. Advanced Functional Materials, 2023, 33(5): 2210735.
DOI URL |
| [74] |
KOIDL P. Jahn-Teller effect in the 4T1(1) and 4T2(1) states of tetrahedrally coordinated Mn2+. Physica Status Solidi (b), 1976, 74(2): 477.
DOI URL |
| [75] |
KRETOV M K, ISKANDAROVA I M, POTAPKIN B V, et al. Simulation of structured 4T1→6A1 emission bands of Mn2+ impurity in Zn2SiO4: a first-principle methodology. Journal of Luminescence, 2012, 132(8): 2143.
DOI URL |
| [76] |
SU B, MOLOKEEV M, XIA Z. Mn2+-based narrow-band green-emitting Cs3MnBr5 phosphor and the performance optimization by Zn2+ alloying. Journal of Materials Chemistry C, 2019, 7(36): 11220.
DOI URL |
| [77] |
KONG Q, MENG X, JI S, et al. Highly reversible cesium manganese iodine for sensitive water detection and X-ray imaging. ACS Materials Letters, 2022, 4(9): 1734.
DOI URL |
| [78] |
XU M, YANG X, YANG X, et al. Heating revival of Cs3MnBr5 for anti-counterfeiting and large-area flexible X-ray imaging. Optical Materials, 2024, 156: 115959.
DOI URL |
| [79] |
ZHOU G, LIU Z, HUANG J, et al. Unraveling the near-unity narrow-band green emission in zero-dimensional Mn2+-based metal halides: a case study of (C10H16N)2Zn1-xMnxBr4 solid solutions. The Journal of Physical Chemistry Letters, 2020, 11(15): 5956.
DOI URL |
| [80] |
XU L J, LIN X, HE Q, et al. Highly efficient eco-friendly X-ray scintillators based on an organic manganese halide. Nature Communications, 2020, 11: 4329.
DOI |
| [81] | WU Y, ZHU Y, AHMED A A, et al. Excitation-dependent anti-thermal quenching in zero-dimensional manganese bromides for photoluminescence and X-ray scintillation. Angewandte Chemie International Edition, 2025, 137(5): e202417018. |
| [82] |
LI B, XU Y, ZHANG X, et al. Zero-dimensional luminescent metal halide hybrids enabling bulk transparent medium as large-area X-ray scintillators. Advanced Optical Materials, 2022, 10(10): 2102793.
DOI URL |
| [83] |
LU J, GAO J, WANG S, et al. Improving X-ray scintillating merits of zero-dimensional organic-manganese (II) halide hybrids via enhancing the ligand polarizability for high-resolution imaging. Nano Letters, 2023, 23(10): 4351.
DOI URL |
| [84] |
LIU L, HU H, PAN W, et al. Robust organogel scintillator for self-healing and ultra-flexible X-ray imaging. Advanced Materials, 2024, 36(13): 2311206.
DOI URL |
| [85] | ANDREWS R H, CLARK S J, DONALDSON J D, et al. Solid-state properties of materials of the type Cs4MX6 (where M= Sn or Pb and X=Cl or Br). Journal of the Chemical Society, Dalton Transactions, 1983, 4: 767. |
| [86] |
BENIN B M, DIRIN D N, MORAD V, et al. Highly emissive self-trapped excitons in fully inorganic zero-dimensional tin halides. Angewandte Chemie International Edition, 2018, 57(35): 11329.
DOI URL |
| [87] |
WANG A, LI J, ZHANG Y, et al. Double-shell encapsulation of lead-free tin halide perovskite for self-powered smart windows. Small, 2024, 20(51): 2404149.
DOI URL |
| [88] |
LIU Y, YANG B, YU Z, et al. Eu3+@Cs4SnBr6 NCs-doped silicate glass with efficient tunable white light emission via energy transfer and multi-emission photoluminescence properties. Materials Today Chemistry, 2024, 42: 102387.
DOI URL |
| [89] |
HUANG Y, LU X, WU H, et al. Improving photoluminescence properties of lead-free Cs4SnBr6 zero-dimensional perovskite via Mn2+/Sb3+ co-doping. Journal of Luminescence, 2025, 277: 120930.
DOI URL |
| [90] |
ZHOU C, LIN H, TIAN Y, et al. Luminescent zero-dimensional organic metal halide hybrids with near-unity quantum efficiency. Chemical Science, 2018, 9(3): 586.
DOI PMID |
| [91] | ZHOU C, TIAN Y, YUAN Z, et al. Highly efficient broadband yellow phosphor based on zero-dimensional tin mixed-halide perovskite. ACS Applied Materials & Interfaces, 2017, 9(51): 44579. |
| [92] |
SONG G, LI M, YANG Y, et al. Lead-free tin(IV)-based organic-inorganic metal halide hybrids with excellent stability and blue-broadband emission. The Journal of Physical Chemistry Letters, 2020, 11(5): 1808.
DOI URL |
| [93] |
ZHOU L, ZHOU S, LIU X, et al. Embedding Te4+ into Sn4+-based metal halide to passivate structure defects for high-performance light-emitting application. Inorganic Chemistry, 2024, 63(22): 10335.
DOI URL |
| [94] |
LIU X, LI K, SHAO W, et al. Revealing the structure- luminescence relationship in robust Sn(IV)-based metal halides by Sb3+ doping. Inorganic Chemistry, 2024, 63(11): 5158.
DOI URL |
| [95] |
WEI S, TIE S, SHEN K, et al. High-performance X-ray detector based on liquid diffused separation induced Cs3Bi2I9 single crystal. Advanced Optical Materials, 2021, 9(22): 2101351.
DOI URL |
| [96] |
WANG J, LI Y, MA L, et al. Air-stabilized lead-free hexagonal Cs3Bi2I9 nanocrystals for ultrahigh-performance optical detection. Advanced Functional Materials, 2022, 32(30): 2203072.
DOI URL |
| [97] |
ZHOU C, WORKU M, NEU J, et al. Facile preparation of light emitting organic metal halide crystals with near-unity quantum efficiency. Chemistry of Materials, 2018, 30(7): 2374.
DOI URL |
| [98] |
MCCALL K M, MORAD V, BENIN B M, et al. Efficient lone-pair-driven luminescence: structure-property relationships in emissive 5s2 metal halides. ACS Materials Letters, 2020, 2(9): 1218.
DOI URL |
| [99] |
ZAFFALON M L, WU Y, COVA F, et al. Zero-dimensional Gua3SbCl6 crystals as intrinsically reabsorption-free scintillators for radiation detection. Advanced Functional Materials, 2023, 33(48): 2305564.
DOI URL |
| [100] |
XIE J L, HUANG Z Q, WANG B, et al. New lead-free perovskite Rb7Bi3Cl16 nanocrystals with blue luminescence and excellent moisture-stability. Nanoscale, 2019, 11(14): 6719.
DOI URL |
| [101] |
TANG Y, LIANG M, CHANG B, et al. Lead-free double halide perovskite Cs3BiBr6 with well-defined crystal structure and high thermal stability for optoelectronics. Journal of Materials Chemistry C, 2019, 7(11): 3369.
DOI URL |
| [102] |
LIU X, ZHANG W, XU R, et al. Bright tunable luminescence of Sb3+ doping in zero-dimensional lead-free halide Cs3ZnCl5 perovskite crystals. Dalton Transactions, 2022, 51(26): 10029.
DOI URL |
| [103] |
MARAYATHUNGAL J H, DAS D K, BAKTHAVATSALAM R, et al. Mn2+-activated zero-dimensional metal (Cd, Zn) halide hybrids with near-unity PLQY and zero thermal quenching. The Journal of Physical Chemistry C, 2023, 127(18): 8618.
DOI URL |
| [104] |
HOU C, LIU X, WANG Z, et al. Designing guanidine-based lead-free hybrid indium perovskites with highly efficient intrinsic broadband emissions. Journal of Materials Chemistry C, 2024, 12(20): 7426.
DOI URL |
| [105] |
WU Y, HAN D, CHAKOUMAKOS B C, et al. Zero- dimensional Cs4EuX6 (X = Br, I) all-inorganic perovskite single crystals for gamma-ray spectroscopy. Journal of Materials Chemistry C, 2018, 6(25): 6647.
DOI URL |
| [106] |
SAEKI K, FUJIMOTO Y, KOSHIMIZU M, et al. Comparative study of scintillation properties of Cs2HfCl6 and Cs2ZrCl6. Applied Physics Express, 2016, 9(4): 042602.
DOI |
| [107] |
ZHANG F, ZHOU Y, CHEN Z, et al. Thermally activated delayed fluorescence zirconium-based perovskites for large-area and ultraflexible X-ray scintillator screens. Advanced Materials, 2022, 34(43): 2204801.
DOI URL |
| [108] |
SWIDERSKI L, BRYLEW K, JANIAK L, et al. Cs2ZrCl6 scintillation properties studied using γ-ray spectroscopy and Compton coincidence technique. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2023, 1057: 168735.
DOI URL |
| [109] | ZHU W, MA W, SU Y, et al. Low-dose real-time X-ray imaging with nontoxic double perovskite scintillators. Light: Science & Applications, 2020, 9(1): 112. |
| [110] | YAO S Y, LI H, ZHOU M, et al. Visualization of X-rays with an ultralow detection limit via zero-dimensional perovskite scintillators. ACS Applied Materials & Interfaces, 2022, 14(51): 56957. |
| [111] |
MORAD V, SHYNKARENKO Y, YAKUNIN S, et al. Disphenoidal zero-dimensional lead, tin, and germanium halides: highly emissive singlet and triplet self-trapped excitons and X-ray scintillation. Journal of the American Chemical Society, 2019, 141(25): 9764.
DOI PMID |
| [112] |
HE Q, ZHOU C, XU L, et al. Highly stable organic antimony halide crystals for X-ray scintillation. ACS Materials Letters, 2020, 2(6): 633.
DOI URL |
| [113] | ZHOU W, ZHU X, YU J, et al. High-quality Cs3Cu2I5@PMMA scintillator films assisted by multiprocessing for X-ray imaging. ACS Applied Materials & Interfaces, 2023, 15(32): 38741. |
| [114] |
MA W, LIANG D, QIAN Q, et al. Near-unity quantum yield in zero-dimensional lead-free manganese-based halides for flexible X-ray imaging with high spatial resolution. eScience, 2023, 3(2): 100089.
DOI URL |
| [115] |
DUAN R, CHEN Z, XIANG D, et al. Large-area flexible scintillator screen based on copper-based halides for sensitive and stable X-ray imaging. Journal of Luminescence, 2023, 253: 119482.
DOI URL |
| [116] |
YANG B, YIN L, NIU G, et al. Lead-free halide Rb2CuBr3 as sensitive X-ray scintillator. Advanced Materials, 2019, 31(44): 1904711.
DOI URL |
| [117] |
HAN L, SUN B, GUO C, et al. Photophysics in zero- dimensional potassium-doped cesium copper chloride Cs3Cu2Cl5 nanosheets and its application for high-performance flexible X-ray detection. Advanced Optical Materials, 2022, 10(6): 2102453.
DOI URL |
| [118] |
QIU F, PENG G, XU Y, et al. Sequential vacuum evaporated copper metal halides for scalable, flexible, and dynamic X-ray detection. Advanced Functional Materials, 2023, 33(36): 2303417.
DOI URL |
| [119] |
WANG Z, WEI Y, LIU C, et al. Mn2+-activated Cs3Cu2I5 nano-scintillators for ultra-high resolution flexible X-ray imaging. Laser & Photonics Reviews, 2023, 17(6): 2200851.
DOI URL |
| [120] |
CAO S, ZHU Y, HE P, et al. Cost-effective fabrication of copper(I) halide arrays with mitigated optical crosstalk for high-definition X-ray radiography. Chemical Engineering Journal, 2025, 508: 161139.
DOI URL |
| [121] |
WANG H, ZHANG S, XIA Z. Composition modulation of Cs2ZrCl6-based scintillator film via vapor deposition for large-area X-ray imaging. Small Methods, 2025, 9(8): 2500273.
DOI URL |
| [122] |
SONG X, LIU L, WAN P, et al. Ultrabroad dynamic all-solid-state radiation dose detector based on a 0D Cs3Cu2I5 perovskite-like single crystal. ACS Applied Electronic Materials, 2023, 5(12): 6805.
DOI URL |
| [123] | WANG Q, WANG C, SHI H, et al. Exciton-harvesting enabled efficient charged particle detection in zero-dimensional halides. Light: Science & Applications, 2024, 13(1): 190. |
| [124] |
GAO L, LI Q, SUN J L, et al. Gamma-ray irradiation stability of zero-dimensional Cs3Cu2I5 metal halide scintillator single crystals. The Journal of Physical Chemistry Letters, 2023, 14(5): 1165.
DOI URL |
| [125] |
MYKHAYLYK V, NAGORNY S S, NAHORNA V V, et al. Growth, structure, and temperature dependent emission processes in emerging metal hexachloride scintillators Cs2HfCl6 and Cs2ZrCl6. Dalton Transactions, 2022, 51(17): 6944.
DOI URL |
| [126] |
WU J, DING J, HUANG X, et al. Fabrication and microstructure of Gd2O2S:Tb scintillation ceramics from water-bath synthesized nano-powders: influence of H2SO4/Gd2O3 molar ratio. Journal of Inorganic Materials, 2023, 38(4): 452.
DOI URL |
| [127] |
WANG Q, WANG C, WANG Z, et al. Achieving efficient neutron and gamma discrimination in a highly stable 6Li-loaded Cs3Cu2I5 perovskite scintillator. The Journal of Physical Chemistry Letters, 2022, 13(39): 9066.
DOI URL |
| [128] |
YAO L, GUI W, ZHOU X, et al. Bright lead-free Cs3Cu2I5 perovskite scintillators for thermal neutron detection. Materials Advances, 2023, 4(17): 3714.
DOI URL |
| [129] |
LIAN L, QI W, DING H, et al. Highly luminescent zero- dimensional lead-free manganese halides for β-ray scintillation. Nano Research, 2022, 15(9): 8486.
DOI |
| [130] | WEI C H, DONG S, XU Z, et al. Controllable multi-exciton zero-dimensional antimony-based metal halides for white-light emission and β-ray detection. Angewandte Chemie International Edition, 2024, 63(51): e2024122. |
| [1] | LIU Zhanyi, LI Mian, OUYANG Xiaoping, CHAI Zhifang, HUANG Qing. Recent Progress on Removal of Sr/Cs from Molten Salt in Dry Reprocessing [J]. Journal of Inorganic Materials, 2026, 41(2): 150-158. |
| [2] | REN Xianpei, LI Chao, HU Qiwei, XIANG Hui, PENG Yuehong. Research Progress on Mott-Schottky Hydrogen Evolution Catalysts Based on Metal/Transition Metal Compounds [J]. Journal of Inorganic Materials, 2026, 41(2): 137-149. |
| [3] | ZHOU Qi, LI Xiang, ZHANG Kaihui, WANG Zeliang, DENG Mingxue, JIA Wenbao, WANG Ke, CHEN Junfeng. Organic-Inorganic Composite Scintillators Loaded with LiF-CaF2:Eu Eutectic Powder: Preparation and Characterization [J]. Journal of Inorganic Materials, 2026, 41(2): 201-207. |
| [4] | FAN Yuzhu, WANG Yuan, WANG Linyan, XIANG Meiling, YAN Yuting, LI Benhui, LI Min, WEN Zhidong, WANG Haichao, CHEN Yongfu, QIU Huidong, ZHAO Bo, ZHOU Chengyu. Graphene Oxide-based Adsorbents for Pb(II) Removing in Water: Progresses on Synthesis, Performance and Mechanism [J]. Journal of Inorganic Materials, 2026, 41(1): 12-26. |
| [5] | XU Jintao, GAO Pan, HE Weiyi, JIANG Shengnan, PAN Xiuhong, TANG Meibo, CHEN Kun, LIU Xuechao. Recent Progress on Preparation of 3C-SiC Single Crystal [J]. Journal of Inorganic Materials, 2026, 41(1): 1-11. |
| [6] | YU Shengyang, SU Haijun, JIANG Hao, YU Minghui, YAO Jiatong, YANG Peixin. A Review of Pore Defects in Ultra-high Temperature Oxide Ceramics by Laser Additive Manufacturing: Formation and Suppression [J]. Journal of Inorganic Materials, 2025, 40(9): 944-956. |
| [7] | LIU Jiangping, GUAN Xin, TANG Zhenjie, ZHU Wenjie, LUO Yongming. Research Progress on Catalytic Oxidation of Nitrogen-containing Volatile Organic Compounds [J]. Journal of Inorganic Materials, 2025, 40(9): 933-943. |
| [8] | XIAO Xiaolin, WANG Yuxiang, GU Peiyang, ZHU Zhenrong, SUN Yong. Advances in Regulation of Damaged Skin Regeneration by Two-dimensional Inorganic Materials [J]. Journal of Inorganic Materials, 2025, 40(8): 860-870. |
| [9] | MA Jingge, WU Chengtie. Application of Inorganic Bioceramics in Promoting Hair Follicle Regeneration and Hair Growth [J]. Journal of Inorganic Materials, 2025, 40(8): 901-910. |
| [10] | ZHANG Hongjian, ZHAO Ziyi, WU Chengtie. Inorganic Biomaterials on Regulating Neural Cell Function and Innervated Tissue Regeneration: A Review [J]. Journal of Inorganic Materials, 2025, 40(8): 849-859. |
| [11] | AI Minhui, LEI Bo. Micro-nanoscale Bioactive Glass: Functionalized Design and Angiogenic Skin Regeneration [J]. Journal of Inorganic Materials, 2025, 40(8): 921-932. |
| [12] | WANG Yutong, CHANG Jiang, XU He, WU Chengtie. Advances in Silicate Bioceramic/Bioglass for Wound Healing: Effects, Mechanisms and Application Ways [J]. Journal of Inorganic Materials, 2025, 40(8): 911-920. |
| [13] | MA Wenping, HAN Yahui, WU Chengtie, LÜ Hongxu. Application of Inorganic Bioactive Materials in Organoid Research [J]. Journal of Inorganic Materials, 2025, 40(8): 888-900. |
| [14] | LUO Xiaomin, QIAO Zhilong, LIU Ying, YANG Chen, CHANG Jiang. Inorganic Bioactive Materials Regulating Myocardial Regeneration [J]. Journal of Inorganic Materials, 2025, 40(8): 871-887. |
| [15] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||