Journal of Inorganic Materials
SUN Lian, ZHANG Leilei, XUE Zexu, WU Kun, CHEN Ye, LI Zhiyuan, WANG Lukai, WANG Zungang
Received:
2025-04-08
Revised:
2025-05-05
Contact:
ZHANG Leilei, assistant professor. E-mail: zhangleilei@sklnbcpc.cn; WANG Zungang, professor. E-mail: zhigang7991@163.com
About author:
SUN Lian (1993–), male, assistant professor. E-mail: sunlian12@alumni.nudt.edu.cn
Supported by:
CLC Number:
SUN Lian, ZHANG Leilei, XUE Zexu, WU Kun, CHEN Ye, LI Zhiyuan, WANG Lukai, WANG Zungang. Research Progress of Zero-dimensional Metal Halide Scintillators towards Radiation Detection Applications[J]. Journal of Inorganic Materials, DOI: 10.15541/jim20250148.
[1] ZHENG Z, WEI Q, TONG Y,et al. Effect of Zr4+ co-doping on neutron/gamma discrimination of Cs2LaLiBr6:Ce crystals. Journal of Inorganic Materials, 2024, 39(5): 539. [2] JANA A, CHO S, PATIL S A, et al. Perovskite: scintillators, direct detectors, and X-ray imagers.Materials Today, 2022, 55: 110. [3] NIKL M, YOSHIKAWA A.Recent R&D trends in inorganic single-crystal scintillator materials for radiation detection. Advanced Optical Materials, 2015, 3(4): 463. [4] SHEN Y Q, SHI Y, PAN Y B, et al. Fabrication and 2D-mapping of Pr: Lu3Al5O12 scintillator ceramics with high light yield and fast decay time.Journal of Inorganic Materials, 2014, 29(5): 534. [5] GLODO J, WANG Y, SHAWGO R,et al. New developments in scintillators for security applications. Physics Procedia, 2017, 90: 285. [6] DI FULVIO A, SHIN T H, HAMEL M C,et al. Digital pulse processing for NaI(Tl) detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 806: 69. [7] HAWRAMI R, ARIESANTI E, FARSONI A,et al. Growth and evaluation of improved CsI:Tl and NaI:Tl scintillators, Crystals, 2022, 12(11): 1517. [8] BIZARRI G, DORENBOS P.Charge carrier and exciton dynamics in LaBr3:Ce3+ scintillators: experiment and model.Physical Review B, 2007, 75(18): 184302. [9] MOSZYŃSKI M, NASSALSKI A, SYNTFELD-KAŻUCH A,et al. Temperature dependences of LaBr3(Ce), LaCl3, 2006, 568(2): 739. [10] GUO S, LIU K, LIN Z,et al. Temperature dependence of Ce luminescence characteristics in LaBr3: Ce crystal. Journal of Luminescence, 2025, 277: 120956. [11] ZHOU L, LIAO J F, KUANG D B.An overview for zero-dimensional broadband emissive metal-halide single crystals.Advanced Optical Materials, 2021, 9(17): 2100544. [12] WELLS H L. Über die cäsium- und kalium-bleihalogenide. Zeitschrift fur Anorganische Chemie, 1893, 3(1): 195. [13] PAUL D K, HOSSAIN A K M A. A comprehensive DFT + U investigation of electrical, optical, and structural properties of doped CsSnCl3 perovskite: unveiling optoelectronic potential.Computational Materials Science, 2024, 231: 112585. [14] CHEN B, GUO Y, WANG Y,et al. Multiexcitonic emission in zero-dimensional Cs2ZrCl6:Sb3+ perovskite crystals. Journal of the American Chemical Society, 2021, 143(42): 17599. [15] TSUJI M, SASASE M, IIMURA S,et al. Room-temperature solid-state synthesis of Cs3Cu2I5 thin films and formation mechanism for its unique local structure. Journal of the American Chemical Society, 2023, 145(21): 11650. [16] SUN C, DENG Z, LI Z,et al. Achieving near-unity photoluminescence quantum yields in organic-inorganic hybrid antimony (III) chlorides with the [SbCl5] geometry. Angewandte Chemie International Edition, 2023, 62(10): e202216720. [17] ZHANG B, PINCHETTI V, ZITO J, et al. Isolated [SbCl6]3- octahedra are the only active emitters in Rb7Sb3Cl16 Nanocrystals. ACS Energy Letters, 2021, 6(11): 3952. [18] ECKHARDT K, BON V, GETZSCHMANN J,et al. Crystallographic insights into (CH3NH3)3(Bi2I9): a new lead-free hybrid organic-inorganic material as a potential absorber for photovoltaics. Chemical Communications, 2016, 52(14): 3058. [19] DING M, WU Q, SHEN Y,et al.(C8H7N2O2)2[Bi2Br8]·2H2O and (C8H7N2O2)6[Bi2Cl10]Cl2·2H2O: exploring birefringent crystals in hybrid halide systems. Inorganic Chemistry, 2024, 63(21): 9701. [20] LI M, XIA Z.Recent progress of zero-dimensional luminescent metal halides.Chemical Society Reviews, 2021, 50(4): 2626. [21] LIU J, LI M, HAN Q,et al. Theoretical investigation of the structural stability, electronic and optical properties of the double perovskite Cs2ZrX6(X=Cl, Br, I). Materials Science in Semiconductor Processing, 2024, 171: 107984. [22] HAN D, SHI H, MING W,et al. Unraveling luminescence mechanisms in zero-dimensional halide perovskites. Journal of Materials Chemistry C, 2018, 6(24): 6398. [23] HOANG T B, MOSES A F, ZHOU H L,et al. Observation of free exciton photoluminescence emission from single wurtzite GaAs nanowires. Applied Physics Letters, 2009, 94(13): 133105. [24] ZHANG Y, TU D, WANG L,et al. Transition metal ion-doped cesium lead halide perovskite nanocrystals: doping strategies and luminescence design. Materials Chemistry Frontiers, 2024, 8(1): 192. [25] SMITH M D, KARUNADASA H I.White-light emission from layered halide perovskites.Accounts of Chemical Research, 2018, 51(3): 619. [26] LI S, LUO J, LIU J,et al. Self-trapped excitons in all-inorganic halide perovskites: fundamentals, status, and potential applications. The Journal of Physical Chemistry Letters, 2019, 10(8): 1999. [27] MURRAY R B, MEYER A.Scintillation response of activated inorganic crystals to various charged particles.Physical Review, 1961, 122(3): 815. [28] BIZARRI G.Scintillation mechanisms of inorganic materials: from crystal characteristics to scintillation properties.Journal of Crystal Growth, 2010, 312(8): 1213. [29] YAO Q, LI J, LI X,et al. Achieving a record scintillation performance by micro-doping a heterovalent magnetic ion in Cs3Cu2I5 single-crystal. Advanced Materials, 2023, 35(44): 2304938. [30] TONGUC B T, ARSLAN H AL-BURIAHI M S. Studies on mass attenuation coefficients, effective atomic numbers and electron densities for some biomolecules.Radiation Physics and Chemistry, 2018, 153: 86. [31] DORENBOS P, HAAS J, EIJK C.Non-proportionality in the scintillation response and the energy resolution obtainable with scintillation crystals.IEEE Transactions on Nuclear Science, 1995, 42(6): 2190. [32] MOSZYŃSKI M, SYNTFELD-KAŻUCH A, SWIDERSKI L,et al. Energy resolution of scintillation detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 805: 25. [33] LECOQ P, KORZNIK M.Scintillator Developments for High Energy Physics and Medical Imaging, 1999 IEEE Nuclear Science Symposium. Conference Record. 1999 Nuclear Science Symposium and Medical Imaging Conference (Cat. No.99CH37019), 1999, 1: 1-5. [34] RONDA C.Scintillators for medical imaging.Optical Materials: X, 2024, 22: 100293. [35] TANG Y, DENG M, LIU Q,et al. Reducing luminescence intensity and suppressing irradiation-induced darkening of Bi4Ge3O12 by Ce-doping for radiation detection. Advanced Optical Materials, 2024, 12(2): 2301332. [36] WANG J X, SHEKHAH O, BAKR O M,et al. Energy transfer-based X-ray imaging scintillators. Chem, 2025, 11(1): 102273. [37] YIN J, ZHANG Y, BRUNO A,et al. Intrinsic lead ion emissions in zero-dimensional Cs4PbBr6 nanocrystals. ACS Energy Letters, 2017, 2(12): 2805. [38] NIKL M, MIHOKOVA E, NITSCH K,et al. Photoluminescence of Cs4PbBr6 crystals and thin films. Chemical Physics Letters, 1999, 306(5): 280. [39] AKKERMAN Q A, PARK S, RADICCHI E,et al. Nearly monodisperse insulator Cs4PbX6(X=Cl, Br, I) nanocrystals, their mixed halide compositions, and their transformation into CsPbX3 Nanocrystals. Nano Letters, 2017, 17(3): 1924. [40] BAO Z, TSENG Y J, YOU W,et al. Efficient luminescence from CsPbBr3 nanoparticles embedded in Cs4PbBr6. The Journal of Physical Chemistry Letters, 2020, 11(18): 7637. [41] SAIDAMINOV M I, ALMUTLAQ J, SARMAH S, et al. Pure Cs4PbBr6: highly luminescent zero-dimensional perovskite solids. ACS Energy Letters, 2016, 1(4): 840. [42] ZHANG H, LIAO Q, WU Y,et al. Pure zero-dimensional Cs4PbBr6 single crystal rhombohedral microdisks with high luminescence and stability. Physical Chemistry Chemical Physics, 2017, 19(43): 29092. [43] YIN J, YANG H, SONG K,et al. Point defects and green emission in zero-dimensional perovskites. The Journal of Physical Chemistry Letters, 2018, 9(18): 5490. [44] CAO F, YU D, MA W,et al. Shining emitter in a stable host: design of halide perovskite scintillators for X-ray imaging from commercial concept. ACS Nano, 2020, 14(5): 5183. [45] CUI B B, HAN Y, HUANG B,et al. Locally collective hydrogen bonding isolates lead octahedra for white emission improvement. Nature Communications, 2019, 10(1): 5190. [46] ZHOU C, LIN H, WORKU M,et al. Blue emitting single crystalline assembly of metal halide clusters. Journal of the American Chemical Society, 2018, 140(41): 13181. [47] PENG G, AN B, CHEN H,et al. Self-organizing pixelated Cs4PbBr6 scintillator plate for large-area, ultra-flexible, high spatial resolution and stable X-Ray imaging. Advanced Optical Materials, 2023, 11(1): 2201751. [48] XU Q, WANG J, SHAO W,et al. A solution-processed zero-dimensional all-inorganic perovskite scintillator for high resolution gamma-ray spectroscopy detection. Nanoscale, 2020, 12(17): 9727. [49] WU X, ZHOU Q, WU H,et al. Cs4PbBr6-xClx single crystals with tunable emission for X-ray detection and imaging. The Journal of Physical Chemistry C, 2021, 125(48): 26619. [50] WU H, RAN P, YAO L, et al. Confinement of methylammonium lead bromide nanocrystals in metal-organic frameworks as a stable scintillator for high-performance X-ray imaging. Chemical Engineering Journal, 2024, 491: 152098. [51] SHI W, ZHANG X, MATRAS-POSTOLEK K,et al. Mn-derived Cs4PbX6 nanocrystals with stable and tunable wide luminescence for white light-emitting diodes. Journal of Materials Chemistry C, 2022, 10(10): 3886. [52] QIU Y, MA Z, DAI G,et al. Doped 0D Cs4PbCl6 single crystals featuring full-visible-region colorful luminescence. Journal of Materials Chemistry C, 2022, 10(16): 6227. [53] LI Y, CHEN L, GAO R,et al. Nanosecond and highly sensitive scintillator based on all-inorganic perovskite single Crystals. ACS Applied Materials & Interfaces, 2022, 14(1): 1489. [54] HAN J, LI Y, SHEN P,et al. Pressure-induced free exciton emission in a quasi-zero-dimensional hybrid lead halide. Angewandte Chemie International Edition, 2024, 63(1): e202316348. [55] CHEN S, GAO J, CHANG J,et al. Family of highly luminescent pure ionic copper (I) bromide based hybrid materials. ACS Applied Materials & Interfaces, 2019, 11(19): 17513. [56] JUN T, SIM K, IIMURA S, et al. Lead-free highly efficient blue-emitting Cs3Cu2I5 with 0D electronic structure.Advanced Materials, 2018, 30(43): 1804547. [57] YUAN D.Air-stable bulk halide single-crystal scintillator Cs3Cu2I5 by melt growth: Intrinsic and Tl doped with high light yield.ACS Applied Materials & Interfaces, 2020, 12(34): 38333. [58] STAND L, RUTSTROM D, KOSCHAN M,et al. Crystal growth and scintillation properties of pure and Tl-doped Cs3Cu2I5. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 991: 164963. [59] CHENG S, BEITLEROVA A, KUCERKOVA R,et al. Zero-dimensional Cs3Cu2I5 perovskite single crystal as sensitive X-ray and γ-ray scintillator. Physica Status Solidi (RRL) - Rapid Research Letters, 2020, 14(11): 2000374. [60] CHENG S, NIKL M, BEITLEROVA A,et al. Ultrabright and highly efficient all-inorganic zero-dimensional perovskite scintillators. Advanced Optical Materials, 2021, 9(13): 2100460. [61] WANG Q, ZHOU Q, NIKL M,et al. Highly resolved X-Ray imaging enabled by In(I) doped perovskite-like Cs3Cu2I5 single crystal scintillator. Advanced Optical Materials, 2022, 10(11): 2200304. [62] HU Y, YAN X, ZHOU L,et al. Improved energy transfer in Mn-doped Cs3Cu2I5 microcrystals induced by localized lattice distortion. The Journal of Physical Chemistry Letters, 2022, 13(46): 10786. [63] HAPOSAN T, ARRAMEL A, MAULIDA P Y D,et al. All-inorganic copper-halide perovskites for large-Stokes shift and ten-nanosecond-emission scintillators. Journal of Materials Chemistry C, 2024, 12(7): 2398. [64] HUNYADI M, SAMU G F, CSIGE L,et al. Scintillator of polycrystalline perovskites for high-sensitivity detection of charged-particle radiations. Advanced Functional Materials, 2022, 32(48): 2206645. [65] YANG Q, WEI H, LI G,et al. Spectral adjustable Re-Cs3Cu2I5 nanocrystal-in-glass composite with long-term stability. Chemical Engineering Journal, 2024, 483: 149288. [66] LIAN L, ZHENG M, ZHANG W,et al. Efficient and reabsorption-free radioluminescence in Cs3Cu2I5 nanocrystals with self-trapped excitons. Advanced Science, 2020, 7(11): 2000195. [67] ZHU W, LI R, LIU X,et al. Photophysical properties of copper halides with strongly confined excitons and their high-performance X-Ray imaging. Advanced Functional Materials, 2024, 34(26): 2316449. [68] LIN N, WANG X, ZHANG H Y,et al. Zero-dimensional copper(I) halide microcrystals as highly efficient scintillators for flexible X-ray imaging. ACS Applied Materials & Interfaces, 2024, 16(31): 41165. [69] YAO Q, LI J, LI X,et al. High-quality Cs3Cu2I5 single-crystal is a fast-decaying scintillator. Advanced Optical Materials, 2022, 10(23): 2201161. [70] LIAN L, WANG X, ZHANG P,et al. Highly luminescent zero-dimensional organic copper halides for X-ray scintillation. The Journal of Physical Chemistry Letters, 2021, 12(29): 6919. [71] XU T, LI Y, NIKL M,et al. Lead-free zero-dimensional organic-copper (I) halides as stable and sensitive X-ray scintillators. ACS Applied Materials & Interfaces, 2022, 14(12): 14157. [72] LIN N, WANG R C, ZHANG S Y,et al. 0D hybrid cuprous halide as an efficient light emitter and X-ray scintillator. Laser & Photonics Reviews, 2023, 17(12): 2300427. [73] SU B, JIN J, HAN K,et al. Ceramic wafer scintillation screen by utilizing near-unity blue-emitting lead-free metal halide (C8H20N)2Cu2Br4. Advanced Functional Materials, 2023, 33(5): 2210735. [74] KOIDL P.Jahn-Teller effect in the 4T1(1) and 4T2(1) states of tetrahedrally coordinated Mn2+.Physica Status Solidi (b), 1976, 74(2): 477. [75] KRETOV M K, ISKANDAROVA I M, POTAPKIN B V,et al. Simulation of structured 4T1→6A1 emission bands of Mn2+ impurity in Zn2SiO4: A first-principle methodology. Journal of Luminescence, 2012, 132(8): 2143. [76] SU B, MOLOKEEV M, XIA Z.Mn2+-based narrow-band green-emitting Cs3MnBr5 phosphor and the performance optimization by Zn2+ alloying.Journal of Materials Chemistry C, 2019, 7(36): 11220. [77] KONG Q, MENG X, JI S,et al. Highly reversible cesium manganese iodine for sensitive water detection and X-ray imaging. ACS Materials Letters, 2022, 4(9): 1734. [78] XU M, YANG X, YANG X, et al. Heating revival of Cs3MnBr5 for anti-counterfeiting and large-area flexible X-ray imaging. Optical Materials, 2024, 156: 115959. [79] ZHOU G, LIU Z, HUANG J,et al. Unraveling the near-unity narrow-band green emission in zero-dimensional Mn2+-based metal halides: a case study of (C10H16N)2Zn1-xMnxBr4 solid solutions. The Journal of Physical Chemistry Letters, 2020, 11(15): 5956. [80] XU L J, LIN X, HE Q,et al. Highly efficient eco-friendly X-ray scintillators based on an organic manganese halide. Nature Communications, 2020, 11(1): 4329. [81] WU Y, ZHU Y, AHMED A A,et al. Excitation-dependent anti-thermal quenching in zero-dimensional manganese bromides for photoluminescence and X-ray scintillation. Angewandte Chemie, 2025, 137(5): 1 [82] LI B, XU Y, ZHANG X,et al. Zero-dimensional luminescent metal halide hybrids enabling bulk transparent medium as large-area X-ray scintillators. Advanced Optical Materials, 2022, 10(10): 2102793. [83] LU J, GAO J, WANG S, et al. Improving X-ray scintillating merits of zero-dimensional organic-manganese (II) halide hybrids via enhancing the ligand polarizability for high-resolution imaging. Nano Letters, 2023, 23(10): 4351. [84] LIU L, HU H, PAN W,et al. Robust organogel scintillator for self-healing and ultra-flexible X-ray imaging. Advanced Materials, 2024, 36(13): 2311206. [85] ANDREWS R H, CLARK S J, DONALDSON J D, et al. Solid-state properties of materials of the type Cs4MX6(where M = Sn or Pb and X = Cl or Br).Journal of the Chemical Society, Dalton Transactions, 1983, 4: 767. [86] BENIN B M, DIRIN D N, MORAD V,et al. Highly emissive self-trapped excitons in fully inorganic zero-dimensional tin halides. Angewandte Chemie International Edition, 2018, 57(35): 11329. [87] WANG A, LI J, ZHANG Y, et al. Double-shell encapsulation of lead-free tin halide perovskite for self-powered smart windows. Small, 2024, 20(51): 2404149. [88] LIU Y, YANG B, YU Z,et al. Eu3+@Cs4SnBr6 NCs-doped silicate glass with efficient tunable white light emission via energy transfer and multi-emission photoluminescence properties. Materials Today Chemistry, 2024, 42: 102387. [89] HUANG Y, LU X, WU H,et al., Improving photoluminescence properties of lead-free Cs4SnBr6 zero-dimensional perovskite via Mn2+/Sb3+ co-doping. Journal of Luminescence, 2025, 277: 120930. [90] ZHOU C, LIN H, TIAN Y,et al. Luminescent zero-dimensional organic metal halide hybrids with near-unity quantum efficiency. Chemical Science, 2018, 9(3): 586. [91] ZHOU C, TIAN Y, YUAN Z, et al. Highly efficient broadband yellow phosphor based on zero-dimensional tin mixed-halide perovskite.ACS Applied Materials & Interfaces, 2017, 9(51): 44579. [92] SONG G, LI M, YANG Y, et al. Lead-free tin(IV)-based organic-inorganic metal halide hybrids with excellent stability and blue-broadband emission. The Journal of Physical Chemistry Letters, 2020, 11(5): 1808. [93] ZHOU L, ZHOU S, LIU X,et al. Embedding Te4+ into Sn4+-based metal halide to passivate structure defects for high-performance light-emitting application. Inorganic Chemistry, 2024, 63(22): 10335. [94] LIU X, LI K, SHAO W,et al. Revealing the structure-luminescence relationship in robust Sn(IV)-based metal halides by Sb3+ doping. Inorganic Chemistry, 2024, 63(11): 5158. [95] WEI S, TIE S, SHEN K,et al. High-performance X-ray detector based on liquid diffused separation induced Cs3Bi2I9 single crystal. Advanced Optical Materials, 2021, 9(22): 2101351. [96] WANG J, LI Y, MA L,et al. Air-stabilized lead-free hexagonal Cs3Bi2I9 nanocrystals for ultrahigh-performance optical detection. Advanced Functional Materials, 2022, 32(30): 2203072. [97] ZHOU C, WORKU M, NEU J,et al. Facile preparation of light emitting organic metal halide crystals with near-unity quantum efficiency. Chemistry of Materials, 2018, 30(7): 2374. [98] MCCALL K M, MORAD V, BENIN B M,et al., Efficient lone-pair-driven luminescence: structure-property relationships in emissive 5s2 metal halides. ACS Materials Letters, 2020, 2(9): 1218. [99] ZAFFALON M L, WU Y, COVA F,et al. Zero-dimensional Gua3SbCl6 crystals as intrinsically reabsorption-free scintillators for radiation detection. Advanced Functional Materials, 2023, 33(48): 2305564. [100] XIE J L, HUANG Z Q, WANG B,et al. New lead-free perovskite Rb7Bi3Cl16 nanocrystals with blue luminescence and excellent moisture-stability. Nanoscale, 2019, 11(14): 6719. [101] TANG Y, LIANG M, CHANG B,et al. Lead-free double halide perovskite Cs3BiBr6 with well-defined crystal structure and high thermal stability for optoelectronics. Journal of Materials Chemistry C, 2019, 7(11): 3369. [102] LIU X, ZHANG W, XU R,et al. Bright tunable luminescence of Sb3+ doping in zero-dimensional lead-free halide Cs3ZnCl5 perovskite crystals. Dalton Transactions, 2022, 51(26): 10029. [103] MARAYATHUNGAL J H, DAS D K, BAKTHAVATSALAM R,et al. Mn2+-activated zero-dimensional metal (Cd, Zn) halide hybrids with near-unity PLQY and zero thermal quenching. The Journal of Physical Chemistry C, 2023, 127(18): 8618. [104] HOU C, LIU X, WANG Z,et al. Designing guanidine-based lead-free hybrid indium perovskites with highly efficient intrinsic broadband emissions. Journal of Materials Chemistry C, 2024, 12(20): 7426. [105] WU Y, HAN D, CHAKOUMAKOS B C,et al. Zero-dimensional Cs4EuX6(X = Br, I) all-inorganic perovskite single crystals for gamma-ray spectroscopy. Journal of Materials Chemistry C, 2018, 6(25): 6647. [106] SAEKI K, FUJIMOTO Y, KOSHIMIZU M,et al. Comparative study of scintillation properties of Cs2HfCl6 and Cs2ZrCl6. Applied Physics Express, 2016, 9(4): 042602. [107] ZHANG F, ZHOU Y, CHEN Z,et al. Thermally activated delayed fluorescence zirconium-based perovskites for large-area and ultraflexible X-ray scintillator screens. Advanced Materials, 2022, 34(43): 2204801. [108] SWIDERSKI L, BRYLEW K, JANIAK L,et al. Cs2ZrCl6 scintillation properties studied using γ-ray spectroscopy and Compton coincidence technique. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2023, 1057: 168735. [109] ZHU W, MA W, SU Y,et al. Low-dose real-time X-ray imaging with nontoxic double perovskite scintillators. Light: Science & Applications, 2020, 9(1): 112. [110] YAO S Y, LI H, ZHOU M,et al. Visualization of X-rays with an ultralow detection limit via zero-dimensional perovskite scintillators. ACS Applied Materials & Interfaces, 2022, 14(51): 56957. [111] MORAD V, SHYNKARENKO Y, YAKUNIN S,et al. Disphenoidal zero-dimensional lead, tin, and germanium halides: Highly emissive singlet and triplet self-trapped excitons and X-ray scintillation. Journal of the American Chemical Society, 2019, 141(25): 9764. [112] HE Q, ZHOU C, XU L,et al. Highly stable organic antimony halide crystals for X-ray scintillation. ACS Materials Letters, 2020, 2(6): 633. [113] ZHOU W, ZHU X, YU J,et al. High-quality Cs3Cu2I5@PMMA scintillator films assisted by multiprocessing for X-ray imaging. ACS Applied Materials & Interfaces, 2023, 15(32): 38741. [114] MA W, LIANG D, QIAN Q,et al. Near-unity quantum yield in zero-dimensional lead-free manganese-based halides for flexible X-ray imaging with high spatial resolution. eScience, 2023, 3(2): 100089. [115] DUAN R, CHEN Z, XIANG D,et al. Large-area flexible scintillator screen based on copper-based halides for sensitive and stable X-ray imaging. Journal of Luminescence, 2023, 253: 119482. [116] YANG B, YIN L, NIU G,et al. Lead-free halide Rb2CuBr3 as sensitive X-Ray scintillator. Advanced Materials, 2019, 31(44): 1904711. [117] HAN L, SUN B, GUO C,et al. Photophysics in zero-dimensional potassium-doped cesium copper chloride Cs3Cu2Cl5 nanosheets and its application for high-performance flexible X-ray detection. Advanced Optical Materials, 2022, 10(6): 2102453. [118] QIU F, PENG G, XU Y,et al. Sequential vacuum evaporated copper metal halides for scalable, flexible, and dynamic X-ray detection. Advanced Functional Materials, 2023, 33(36): 2303417. [119] WANG Z, WEI Y, LIU C,et al., Mn2+-activated Cs3Cu2I5 nano-scintillators for ultra-high resolution flexible X-ray imaging. Laser & Photonics Reviews, 2023, 17(6): 2200851. [120] CAO S, ZHU Y, HE P, et al. Cost-effective fabrication of copper(I) halide arrays with mitigated optical crosstalk for high-definition X-ray radiography. Chemical Engineering Journal, 2025, 508: 161139. [121] WANG H, ZHANG S, XIA Z.Composition modulation of Cs2ZrCl6-based scintillator film via vapor deposition for large-area X-ray imaging.Small Methods, 2025, DOI: 10.1002/smtd.202500273. [122] SONG X, LIU L, WAN P,et al. Ultrabroad dynamic all-solid-state radiation dose detector based on a 0D Cs3Cu2I5 perovskite-like single crystal. ACS Applied Electronic Materials, 2023, 5(12): 6805. [123] WANG Q, WANG C, SHI H, et al. Exciton-harvesting enabled efficient charged particle detection in zero-dimensional halides.Light: Science & Applications, 2024, 13(1): 190. [124] GAO L, LI Q, SUN J L, et al. Gamma-ray irradiation stability of zero-dimensional Cs3Cu2I5 metal halide scintillator single crystals. The Journal of Physical Chemistry Letters, 2023, 14(5): 1165. [125] MYKHAYLYK V, NAGORNY S S, NAHORNA V V,et al. Growth, structure, and temperature dependent emission processes in emerging metal hexachloride scintillators Cs2HfCl6 and Cs2ZrCl6. Dalton Transactions, 2022, 51(17): 6944. [126] WU J, DING J, HUANG X,et al. Fabrication and microstructure of Gd2O2S:Tb scintillation ceramics from water-bath synthesized nano-powders: influence of H2SO4/Gd2O3 molar ratio. Journal of Inorganic Materials, 2023, 38(4): 452. [127] WANG Q, WANG C, WANG Z,et al. Achieving efficient neutron and gamma discrimination in a highly stable 6Li-loaded Cs3Cu2I5 perovskite scintillator. The Journal of Physical Chemistry Letters, 2022, 13(39): 9066. [128] YAO L, GUI W, ZHOU X,et al. Bright lead-free Cs3Cu2I5 perovskite scintillators for thermal neutron detection. Materials Advances, 2023, 4(17): 3714. [129] LIAN L, QI W, DING H,et al. Highly luminescent zero-dimensional lead-free manganese halides for β-ray scintillation. Nano Research, 2022, 15(9): 8486. [130] WEI C H, DONG S, XU Z,et al. Controllable multi-exciton zero-dimensional antimony-based metal halides for white-light emission and β-ray detection. Angewandte Chemie International Edition, 2024, 63(51): e2024122. |
[1] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[2] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[3] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[4] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[5] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[6] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[7] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[8] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[9] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[10] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[11] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[12] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[13] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
[14] | ZHOU Fan, TIAN Zhilin, LI Bin. Research Progress on Carbide Ultra-high Temperature Ceramic Anti-ablation Coatings for Thermal Protection System [J]. Journal of Inorganic Materials, 2025, 40(1): 1-16. |
[15] | WEI Xiangxia, ZHANG Xiaofei, XU Kailong, CHEN Zhangwei. Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials [J]. Journal of Inorganic Materials, 2024, 39(9): 965-978. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||