Journal of Inorganic Materials
REN Xianpei1, LI Chao1, HU Qiwei1, XIANG Hui1, PENG Yuehong2
Received:
2025-03-25
Revised:
2025-06-12
About author:
REN Xianpei(1982-), male, PhD, associate professor. E-mail: renxianpei@163.com
Supported by:
CLC Number:
REN Xianpei, LI Chao, HU Qiwei, XIANG Hui, PENG Yuehong. Research Progress on Mott-Schottky Hydrogen Evolution Catalysts Based on Metal/Transition Metal Compounds[J]. Journal of Inorganic Materials, DOI: 10.15541/jim20250124.
[1] XU Y, WANG C, HUANG Y,et al. Recent advances in electrocatalysts for neutral and large-current-density water electrolysis. Nano Energy, 2021, 80: 105545. [2] XU Z, WU Z S.Scalable production of high-performance electrocatalysts for electrochemical water splitting at large current densities. eScience, DOI: org/10.1016/j.esci.2024.100334. [3] 李宇明, 徐砚文, 刘红宇, 等. 镍基磷化物的合成及其在电解水制氢中的应用. 化工学报, 2024, 75(12): 4385-4402. [4] 陈心悦, 陈彬剑, 毛煜东, 等. 碱性电解水析氢催化剂的研究进展及展望. 化工进展, DOI: org/10.16085/j.issn.1000-6613.2024-1750. [5] HU C, LV C, ZENG N,et al. Recent advances in Ni-based electrocatalysts for hydrogen evolution reaction. Energy Technology, 2023, 11(1): 2201048. [6] HE H, MAI J H, HU K S, et al. Recent advances in electrocatalysts for efficient hydrogen evolution reaction. Rare Metals, 2025, 44: 2208. [7] 王红霞, 徐婉怡, 张早校. 可再生电力电解制绿色氢能的发展现状与建议. 化工进展, 2022, 41(S1): 118. [8] 张正, 宋凌珺. 电解水制氢技术: 进展、挑战与未来展望. 工程科学学报, 2025, 47(2): 282. [9] DOU S, WANG X, WANG S Y,et al. Rational design of transition metal-based materials for highly efficient electrocatalysis. Small Methods, 2019, 3(1): 1800211. [10] 张博轩, 崔金星, 李智芳, 等. 非贵金属析氢电催化剂的结构调控研究进展. 化学通报, 2023, 86(7): 784. [11] Do H H, Tran N T, VAN TRAN V.Recent advancements and perspectives in MoO2-based heterostructures for electrochemical hydrogen evolution reaction.International Journal of Hydrogen Energy, 2025, 105: 234. [12] XIONG W, YIN H, WU T,et al. Challenges and opportunities of transition metal oxides as electrocatalysts. Chemistry-A European Journal, 2023, 29(5): e202202872. [13] ZHU Y L, LIN Q, ZHONG Y J,et al. Metal oxide-based materials as an emerging family of hydrogen evolution electrocatalysts. Energy & Environmental Science, 2020, 13: 3361. [14] SHIRAZ H G, CRISPIN X, BERGGREN M.Transition metal sulfides for electrochemical hydrogen evolution.International Journal of Hydrogen Energy, 2021, 46(47): 24060. [15] GUO Y, PARK T, YI J W, et al.Nanoarchitectonics for transition‐metal‐sulfide‐based electrocatalysts for water splitting.Advanced Materials, 2019, 31(17): 1807134. [16] 万凯, 向志朋, 刘文博, 等. 过渡金属硫化物电解水析氢/析氧反应电催化剂研究进展. 科学通报, 2022, 67(19): 2126. [17] WANG Z Y, LIU S L, DUAN W,et al. Transition metal selenides as catalysts for electrochemical water splitting. International Journal of Hydrogen Energy, 2024, 60: 1414. [18] LI Y, WANG C, ABDUKAYUM A, et al. Advances in green hydrogen generation based on MoSe2 hybrid catalysts. Electrochimica Acta, 2024, 503:144891. [19] 白苗苗, 刘江英, 韩婕, 等. 硒化镍基电催化水裂解催化剂的研究进展. 功能材料, 2023, 54(11): 11050. [20] DU M, LI D, LIU S.F,et al. Transition metal phosphides: a wonder catalyst for electrocatalytic hydrogen production. Chinese Chemical Letters, 2023, 34(9): 108156. [21] DENG R, GUO M, WANG C, et al. Recent advances in cobalt phosphide-based materials for electrocatalytic water splitting: From catalytic mechanism and synthesis method to optimization design. Nano Materials Science, 2024, 6(2): 139. [22] ZHANG W Y, GUO R H, YUE Q X,et al. High-entropy phosphide bifunctional catalyst: preparation and performance of efficient water splitting. Journal of Inorganic Materials, 2024, 39(11): 1265. [23] PENG X, PI C, ZHANG X,et al. Recent progress of transition metal nitrides for efficient electrocatalytic water splitting. Sustainable Energy & Fuels, 2019, 3(2): 366. [24] 蒋博龙, 崔艳艳, 史顺杰, 等. 双金属氮化物NiMoN析氢催化剂制备及其电解海水析氢性能的研究. 化学学报, 2022, 80(10): 1394. [25] JIANG J, QIU Y, DONG H,et al. Enhancing hydrogen evolution by heterointerface engineering of Ni/MoN catalysts. Journal of Colloid and Interface Science, 2025, 686: 681-690. [26] XU C, HONG Y, LI Z, et al. Transition metal-based heterojunctions for alkaline electrocatalytic water splitting. Coordination Chemistry Reviews, 2025, 523: 216287. [27] LONG X, MENG J, GU J,et al. Interfacial engineering of NiFeP/NiFe-LDH heterojunction for efficient overall water splitting. Chinese Journal of Structural Chemistry, 2022, 41(4): 2204046. [28] ZHAO G, JIANG Y, DOU S X, et al. Interface engineering of heterostructured electrocatalysts towards efficient alkaline hydrogen electrocatalysis. Science Bulletin, 2021, 66(1): 85. [29] REN X P, LI Q, LING F,et al. Construction of MoO2/MoS2 heterojunction on carbon nanotubes as high-efficiency electrocatalysts for H2 production. CrystEngComm, 2023, 25: 5238. [30] XU D, ZHANG S N, LI X H,et al. Design of the synergistic rectifying interfaces in Mott-Schottky catalysts. Chemical Reviews, 2023, 123(1): 1. [31] ZHANG H M, LI R, MUHAMMAD H,et al. Recent progress in Mott-Schottky junction electrocatalysts for the pH-universal hydrogen evolution reaction. Materials Chemistry Frontiers, 2024, 8(12): 2811. [32] TONG Y X, LIU W, LI C M, et al. A metal/semiconductor contact induced Mott-Schottky junction for enhancing the electrocatalytic activity of water-splitting catalysts. Sustainable Energy Fuels, 2023, 7(1): 12. [33] QIAO D, YUN S, SUN M,et al. 1D/3D trepang-like N-modified carbon confined bimetal carbides and metal cobalt: Boosting electron transfer via dual Mott-Schottky heterojunctions triggered built-in electric fields for efficient hydrogen evolution and tri-iodide reduction. Applied Catalysis B: Environmental, 2023, 334: 122830. [34] 刘恩科, 朱秉升, 罗晋生. 半导体物理学. 北京: 电子工业出版社, 2017. [35] 张伶, 陈红梅, 魏子栋. 过渡金属氧化物催化析氧反应研究进展. 化工学报, 2020, 71(9): 3876. [36] SAHOO S, WICKRAMATHILAKA K Y, NJERI E,et al. A review on transition metal oxides in catalysis. Frontiers in Chemistry, 2024, 12: 1374878. [37] CHEN L, WANG H, TIAN W W, et al. Enabling internal electric field in heterogeneous nanosheets to significantly accelerate alkaline hydrogen electrocatalysis. Small, 2024, 20(18): 2307252. [38] LI R, PU Z, ZHOU R,et al. In situ controllable construction of Ni@NiO Schottky heterojunctions for electrocatalytic hydrogen evolution. Journal of Materials Chemistry C, 2024, 12(46): 18849. [39] CHEN J, ZHENG J, HE W,et al. Self-standing hollow porous Co/a-WOx nanowire with maximum Mott-Schottky effect for boosting alkaline hydrogen evolution reaction. Nano Research, 2023, 16(4): 4603. [40] LIU M, YANG H, ZHOU Z, et al. Homologous heterostructures of Ni/NiFeO Mott-Schottky for alkaline water electrolysis. Journal of Materials Chemistry A, 2024, 12: 22210. [41] PENG L, SU L, YU X,et al. Electron redistribution of ruthenium-tungsten oxides Mott-Schottky heterojunction for enhanced hydrogen evolution. Applied Catalysis B: Environmental, 2022, 308: 121229. [42] 何倩倩, 王哲, 孟令佳, 等. 基于过渡金属二硫族化物析氢催化的研究进展. 高等学校化学学报, 2021, 42(2): 523. [43] SUN J, MENG X.Modulating the electronic properties of MoS2 nanosheets for electrochemical hydrogen production: a review.ACS Applied Nano Materials, 2021, 4(11): 11413. [44] JIANG L, XIA Y X, LI J J,et al. Engineering Mott-Schottky heterojunction Auδ+/1T-MoS1.76 electrocatalyst for boosting hydrogen evolution reaction. ACS Applied Energy Materials, 2023, 6(6): 3255. [45] SUN Z, LIN L, YUAN M W,et al. Mott-Schottky heterostructure induce the interfacial electron redistribution of MoS2 for boosting pH-universal hydrogen evolution with Pt-like activity. Nano Energy, 2022, 101: 107563. [46] WAZIR M B, DAUD M, SAFEER Set al. Review on 2D molybdenum diselenide (MoSe2) and its hybrids for green hydrogen (H2) generation applications. ACS Omega, 2022, 7(20): 16856. [47] YANG C M, LI X, LIANG Y C.Recent advances in molybdenum diselenide-based electrocatalysts: preparation and application in the hydrogen evolution reaction.Inorganic Chemistry Frontiers, 2023, 10(19): 5517. [48] YANG C, ZHOU L, WANG C,et al. Large-scale synthetic Mo@(2H-1T)-MoSe2 monolithic electrode for efficient hydrogen evolution in all pH scale ranges and seawater. Applied Catalysis B: Environmental, 2022, 304: 120993. [49] SONG T, ZHANG Z, ZHAO B,et al. Boosting catalytic performance of hierarchical Co/Co0.85Se microspheres via Mott-Schottky effect toward triiodide reduction and alkaline hydrogen evolution. Journal of Alloys and Compounds, 2022, 918: 165608. [50] REN X P, HU Q W, LING F,et al. Mott-Schottky heterojunction formation between Co and MoSe2 on carbon nanotubes towards superior hydrogen evolution. New Carbon Materials, 2023, 38(6): 1059. [51] SHI Y M, ZHANG B.Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction.Chemical Society Reviews, 2016, 45(6): 1529-1541. [52] 杨博, 吕功煊, 马建泰, 等. 过渡金属磷化物在催化反应中的稳定性. 化学进展, 2024, 36(7): 998. [53] LIU Z Y, FENG C, YANG S T,et al. 1D/3D dual carbon-supported Mott-Schottky-type Co-Co2P heterojunctions for pH-universal hydrogen evolution. Journal of Colloid and Interface Science, 2024, 657: 559. [54] WANG Z, WANG S.Constructing built-in electric field to accelerate the asymmetric local charge distribution for efficient alkaline overall water/seawater splitting.Applied Catalysis B: Environment and Energy, 2024, 352: 124002. [55] XUE Z H, SU H, YU Q Y,et al. Janus Co/CoP nanoparticles as efficient Mott-Schottky electrocatalysts for overall water splitting in wide pH range. Advanced Energy Materials, 2017, 7(12): 1602355. [56] YAN L, CHEN Y H, XIE J C,et al. Optimizing heterointerface of NiCoP-Co/MXene with regulated charge distribution via built-in electric field for efficient overall water-splitting. Rare Metals, 2025, 44(2): 1067. [57] 秦睿, 王鹏彦, 林灿, 等. 过渡金属氮化物的活性起源、合成方法及电催化应用. 物理化学学报, 2021, 37(7): 41. [58] TANG S, ZHANG Z, XIANG J,et al. Recent advances in transition metal nitrides for hydrogen electrocatalysis in alkaline media: From catalyst design to application. Frontiers in Chemistry, 2022, 10: 1073175. [59] ZHOU Y M, CHU B X, SUN Z J, et al. Surface reconstruction and charge distribution enabling Ni/W5N4 Mott-Schottky heterojunction bifunctional electrocatalyst for efficient urea-assisted water electrolysis. Applied Catalysis B: Environmental, 2023, 323: 122168. [60] HONG Z Z, XU Z L, WU Z T,et al. Construction of core-shell Co-NC@W2N Schottky heterojunctions for high-efficiency hydrogen evolution reaction. Applied Surface Science, 2023, 608: 155159. [61] RUI D, LI J, DU X,et al. VFe@Ni/Ni3N Mott-Schottky heterojunction induced electronic modulation for efficient alkaline water splitting. Journal of Electroanalytical Chemistry, 2023, 947: 117763. [62] SAKILA K, PAL S, ROY P,et al. Surface oxygen vacancy engineering of Cr-doped FeNi3/NiFe2O4 Mott-Schottky heterojunction as efficient electrocatalyst for high current density water oxidation. Journal of Alloys and Compounds, 2024, 977: 173393. [63] JIANG M M, XU J, CHEN Y J, et al. High-efficiency photo-assisted large current-density water splitting with Mott-Schottky heterojunctions. Angewandte Chemie International Edition, 2024, 64(3): e202415492. [64] HUANG Z, CHEN L, ZHANG H,et al. Manipulating interfacial charge redistribution in Mott-Schottky electrocatalyst for high-performance water-seawater splitting. Chemical Engineering Journal, 2024, 501: 157628. [65] REN Y, WANG C, DUAN W, et al. MoS2/Ni3S2 Schottky heterojunction regulating local charge distribution for efficient urea oxidation and hydrogen evolution. Journal of Colloid and Interface Science, 2022, 628: 446. [66] GU C, ZHOU G Y, YANG J,et al. NiS/MoS2 Mott-Schottky heterojunction-induced local charge redistribution for high-efficiency urea-assisted energy-saving hydrogen production. Chemical Engineering Journal, 2022, 443: 136321. [67] YUN S, GAO Z, YANG T,et al. Constructing NiSe2/MoSe2 Mott-Schottky heterojunctions onto N-doped brain coral-carbon spheres by phase separation strategies for advanced energy conversion applications. Advanced Functional Materials, 2023, 34(17): 2314226. [68] SUN Y, CAO W, GE X, et al. Built-in electric field induced interfacial charge distributions of Ni2P/NiSe2 heterojunction for urea-assisted hydrogen evolution reaction. Inorganic Chemistry Frontiers, 2023, 10: 6674. [69] QIN M, CHEN L, ZHANG H,et al. Achieving highly efficient pH-universal hydrogen evolution by Mott-Schottky heterojunction of Co2P/Co4N. Chemical Engineering Journal, 2023, 454: 14023. |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[8] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[9] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[10] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[11] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[12] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[13] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[14] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
[15] | ZHOU Fan, TIAN Zhilin, LI Bin. Research Progress on Carbide Ultra-high Temperature Ceramic Anti-ablation Coatings for Thermal Protection System [J]. Journal of Inorganic Materials, 2025, 40(1): 1-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||