Journal of Inorganic Materials
Previous Articles Next Articles
ZHU Jianhua1,2, YANG Xin1, RU Lingjie1
Received:
2025-03-07
Revised:
2025-08-13
About author:
ZHU Jianhua, male, associate professor. E-mail: zjianhua@ahut.edu.cn
Supported by:
CLC Number:
ZHU Jianhua, YANG Xin, RU Lingjie. 2D/2D Coupled ZnIn2S4/TiO2 Heterojunction and Enhanced Photocatalytic Reduction of CO2[J]. Journal of Inorganic Materials, DOI: 10.15541/jim20250097.
[1] GHOSH S, MODAK A, SAMANTA A,et al. Recent progress in materials development for CO2 conversion: issues and challenges. Materials Advances, 2021, 2(10): 3161. [2] LIU W, LI H Q, OU P F,et al. Isolated Cu-Sn diatomic sites for enhanced electroreduction of CO2 to CO. Nano Research, 2023, 16(7): 8729. [3] GAO W, LI S, HE H C,et al. Vacancy-defect modulated pathway of photoreduction of CO2 on single atomically thin AgInP2S6 sheets into olefiant gas. Nature Communications, 2021, 12: 4747. [4] JIA X M, SUN H Y, LIN H L,et al. In-depth insight into the mechanism on photocatalytic selective CO2 reduction coupled with tetracycline oxidation over BiO1-x Br/g-C3N4. Applied Surface Science, 2023, 614: 156017. [5] SAGARA N, KAMIMURA S, TSUBOTA T,et al. Photoelectrochemical CO2 reduction by a p-type boron-doped g-C3N4 electrode under visible light. Applied Catalysis B: Environmental, 2016, 192: 193. [6] FU Y J, XU Y R, MAO Y J,et al. Multi-functional Ag/Ag3PO4/AgPMo with S-scheme heterojunction for boosted photocatalytic performance. Separation and Purification Technology, 2023, 317: 123922. [7] WANG G R, QUAN Y K, HAO X Q,et al. Strong redox-capable graphdiyne-based double S-scheme heterojunction 10%GC/Mo for enhanced photocatalytic hydrogen evolution. Journal of Environmental Chemical Engineering, 2023, 11(1): 109119. [8] ALI S, ABDUL NASIR J, NASIR DARA R,et al. Modification strategies of metal oxide photocatalysts for clean energy and environmental applications: a review. Inorganic Chemistry Communications, 2022, 145: 110011. [9] MOURYA A K, SINGH R P, KUMAR T,et al. Tuning the morphologies of ZnO for enhanced photocatalytic activity. Inorganic Chemistry Communications, 2023, 154: 110850. [10] LIU X B, ZHU C Y, LI M Y,et al. Confinement synthesis of atomic copper-anchored polymeric carbon nitride in crystalline UiO-66-NH2 for high-performance CO2-to-CH3OH photocatalysis. Angewandte Chemie International Edition, 2024, 63(45): e202412408. [11] WANG M M, MA Y X, FO Y M,et al. Theoretical insights into the origin of highly efficient photocatalyst NiO/NaTaO3 for overall water splitting. International Journal of Hydrogen Energy, 2020, 45(38): 19357. [12] PAN B, WU Y, RHIMI B,et al. Oxygen-doping of ZnIn2S4 nanosheets towards boosted photocatalytic CO2 reduction. Journal of Energy Chemistry, 2021, 57: 1. [13] WANG J, SUN S J, ZHOU R,et al. A review: synthesis, modification and photocatalytic applications of ZnIn2S4. Journal of Materials Science & Technology, 2021, 78: 1. [14] ANUCHA C B, ALTIN I, BACAKSIZ E,et al. Titanium dioxide (TiO2)-based photocatalyst materials activity enhancement for contaminants of emerging concern (CECs) degradation: in the light of modification strategies. Chemical Engineering Journal Advances, 2022, 10: 100262. [15] ALWARED A I, SULAIMAN F A, RAAD H,et al. Ability of FeNi3/SiO2/TiO2 nanocomposite to degrade amoxicillin in wastewater samples in solar light-driven processes. South African Journal of Botany, 2023, 153: 195. [16] WANG J, WANG G H, CHENG B,et al. Sulfur-doped g-C3N4/TiO2 S-scheme heterojunction photocatalyst for Congo Red photodegradation. Chinese Journal of Catalysis, 2021, 42(1): 56. [17] WU X H, CHEN G Q, LI L T,et al. ZnIn2S4-based S-scheme heterojunction photocatalyst. Journal of Materials Science & Technology, 2023, 167: 184. [18] LI M Z, WANG L L, ZHANG X Y,et al. Recent status and future perspectives of ZnIn2S4 for energy conversion and environmental remediation. Chinese Chemical Letters, 2023, 34(7): 107775. [19] SHI X W, DAI C, WANG X,et al. Protruding Pt single-sites on hexagonal ZnIn2S4 to accelerate photocatalytic hydrogen evolution. Nature Communications, 2022, 13(1): 1287. [20] CHONG W K, NG B J, ER C C,et al. Insights from density functional theory calculations on heteroatom P-doped ZnIn2S4 bilayer nanosheets with atomic-level charge steering for photocatalytic water splitting. Scientific Reports, 2022, 12(1): 1927. [21] LIU H, ZHANG J, AO D.Construction of heterostructured ZnIn2S4@NH2-MIL-125(Ti) nanocomposites for visible-light-driven H2 production.Applied Catalysis B: Environmental, 2018, 221: 433. [22] SALEHI GHALEHSEFID E, GHORBANI JAHANI Z, ALIABADI A,et al. TiO2 nanotube/ZnIn2S4 nanoflower composite with step-scheme heterojunction for efficient photocatalytic H2O2 production and organic dye degradation. Journal of Environmental Chemical Engineering, 2023, 11(3): 110160. [23] HE Z L, ZHANG J, LI X,et al. 1D/2D heterostructured photocatalysts: from design and unique properties to their environmental applications. Small, 2020, 16(46): 2005051. [24] LIU G, WANG G H, HU Z H,et al. Ag2O nanoparticles decorated TiO2 nanofibers as a p-n heterojunction for enhanced photocatalytic decomposition of RhB under visible light irradiation. Applied Surface Science, 2019, 465: 902. [25] DU H, LI N Y, YANG L X,et al. Plasmonic Ag modified Ag3VO4/AgPMo S-scheme heterojunction photocatalyst for boosted Cr(VI) reduction under visible light: performance and mechanism. Separation and Purification Technology, 2023, 304: 122204. [26] NING Y Q, LV D Q, TANG Q,et al. Novel 2D/2D/2D heterojunction of ZnIn2S4/g-C3N4/MoS2 for enhanced photocatalytic hydrogen evolution reaction. Ceramics International, 2024, 50(22): 48692. [27] GUO F, YANG M, LI R X,et al. Nanosheet-engineered NH2-MIL-125 with highly active facets for enhanced solar CO2 reduction. ACS Catalysis, 2022, 12(15): 9486. [28] XIANG G L, LI T Y, ZHUANG J,et al. Large-scale synthesis of metastable TiO2(B) nanosheets with atomic thickness and their photocatalytic properties. Chemical Communications, 2010, 46(36): 6801. [29] ALMAJIDI Y Q, AL-DOLAIMY F, ALSAAB H O,et al. Build-in internal electric field in vacancy engineered CdS@ZnIn2S4 type-II heterostructure for boosting photocatalytic tetracycline degradation and in situ H2O2 generation. Materials Research Bulletin, 2024, 170: 112570. [30] JALALI E, MAGHSOUDI S, NOROOZIAN E.A novel method for biosynthesis of different polymorphs of TiO2 nanoparticles as a protector for Bacillus thuringiensis from Ultra Violet.Scientific Reports, 2020, 10: 426. [31] FIAZ M, KASHIF M, MAJEED D S,et al. Facile fabrication of highly efficient photoelectrocatalysts MxOy@NH2-MIL-125(Ti) for enhanced hydrogen evolution reaction. ChemistrySelect, 2019, 4(23): 6996. [32] CHENG X M, DAO X Y, WANG S Q, et al. Enhanced photocatalytic CO2 reduction activity over NH2-MIL-125(Ti) by facet regulation. ACS Catalysis, 2020, 11(2): 650. [33] PRAVEEN P, VIRUTHAGIRI G, MUGUNDAN S,et al. Structural, optical and morphological analyses of pristine titanium di-oxide nanoparticles-Synthesized via Sol-gel route. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014, 117: 622. [34] GE Y, ZHANG C H, YU Z Z,et al. ZnIn2S4/TiO2 photocatalyst for CO2 photoreduction: advancing sustainable energy conversion to renewable solar fuels. Journal of Industrial and Engineering Chemistry, 2024, 132: 335. [35] NGUYEN N H, WU H Y, BAI H.Photocatalytic reduction of NO2 and CO2 using molybdenum-doped titania nanotubes.Chemical Engineering Journal, 2015, 269: 60. [36] TANG Q J, SUN Z X, WANG P L,et al. Enhanced CO2 photocatalytic reduction performance on alkali and alkaline earth metal ion-exchanged hydrogen titanate nanotubes. Applied Surface Science, 2019, 463: 456. [37] WANG L B, CHENG B, ZHANG L Y,et al. In situ irradiated XPS investigation on S-scheme TiO2@ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction. Small, 2021, 17(41): 2103447. [38] JIA X F, LU Y, DU K R,et al. Interfacial mediation by Sn and S vacancies of p-SnS/n-ZnIn2S4 for enhancing photocatalytic hydrogen evolution with new scheme of type-I heterojunction. Advanced Functional Materials, 2023, 33(50): 2304072. [39] LI H, CHEN Z H, ZHAO L,et al. Synthesis of TiO2@ZnIn2S4 hollow nanospheres with enhanced photocatalytic hydrogen evolution. Rare Metals, 2019, 38(5): 420. [40] DI T M, ZHANG J F, CHENG B,et al. Hierarchically nanostructured porous TiO2(B) with superior photocatalytic CO2 reduction activity. Science China Chemistry, 2018, 61(3): 344. [41] LIU L J, ZHAO H L, ANDINO J M, et al. Photocatalytic CO2 reduction with H2O on TiO2 nanocrystals: comparison of anatase, rutile, and brookite polymorphs and exploration of surface chemistry. ACS Catalysis, 2012, 2(8): 1817. [42] ZHOU F H, ZHANG Y L, WU J,et al. Utilizing Er-doped ZnIn2S4 for efficient photocatalytic CO2 conversion. Applied Catalysis B: Environmental, 2024, 341: 123347. [43] YANG G, CHEN D M, DING H,et al. Well-designed 3D ZnIn2S4 nanosheets/TiO2 nanobelts as direct Z-scheme photocatalysts for CO2 photoreduction into renewable hydrocarbon fuel with high efficiency. Applied Catalysis B: Environmental, 2017, 219: 611. |
[1] | JIA Xianghua, ZHANG Huixia, LIU Yanfeng, ZUO Guihong. Cu2O/Cu Hollow Spherical Heterojunction Photocatalysts Prepared by Wet Chemical Approach [J]. Journal of Inorganic Materials, 2025, 40(4): 397-404. |
[2] | YANG Jialin, WANG Liangjun, RUAN Siyuan, JIANG Xiulin, YANG Chang. Highly Weak-light Sensitive and Dual-band Switchable Photodetector Based on CuI/Si Unilateral Heterojunction [J]. Journal of Inorganic Materials, 2024, 39(9): 1063-1069. |
[3] | YE Maosen, WANG Yao, XU Bing, WANG Kangkang, ZHANG Shengnan, FENG Jianqing. II/Z-type Bi2MoO6/Ag2O/Bi2O3 Heterojunction for Photocatalytic Degradation of Tetracycline under Visible Light Irradiation [J]. Journal of Inorganic Materials, 2024, 39(3): 321-329. |
[4] | CHAO Shaofei, XUE Yanhui, WU Qiong, WU Fufa, MUHAMMAD Sufyan Javed, ZHANG Wei. Efficient Potassium Storage through Ti-O-H-O Electron Fast Track of MXene Heterojunction [J]. Journal of Inorganic Materials, 2024, 39(11): 1212-1220. |
[5] | ZHANG Shumin, XI Xiaowen, SUN Lei, SUN Ping, WANG Deqiang, WEI Jie. Sonodynamic and Enzyme-like Activities of Niobium-based Coatings: Antimicrobial, Cell Proliferation and Cell Differentiation [J]. Journal of Inorganic Materials, 2024, 39(10): 1125-1134. |
[6] | HU Ying, LI Ziqing, FANG Xiaosheng. Solution-prepared AgBi2I7 Thin Films and Their Photodetecting Properties [J]. Journal of Inorganic Materials, 2023, 38(9): 1055-1061. |
[7] | LI Yuejun, CAO Tieping, SUN Dawei. Bi4O5Br2/CeO2 Composite with S-scheme Heterojunction: Construction and CO2 Reduction Performance [J]. Journal of Inorganic Materials, 2023, 38(8): 963-970. |
[8] | TUERHONG Munire, ZHAO Honggang, MA Yuhua, QI Xianhui, LI Yuchen, YAN Chenxiang, LI Jiawen, CHEN Ping. Construction and Photocatalytic Activity of Monoclinic Tungsten Oxide/Red Phosphorus Step-scheme Heterojunction [J]. Journal of Inorganic Materials, 2023, 38(6): 701-707. |
[9] | WU Lin, HU Minglei, WANG Liping, HUANG Shaomeng, ZHOU Xiangyuan. Preparation of TiHAP@g-C3N4 Heterojunction and Photocatalytic Degradation of Methyl Orange [J]. Journal of Inorganic Materials, 2023, 38(5): 503-510. |
[10] | MA Rundong, GUO Xiong, SHI Kaixuan, AN Shengli, WANG Ruifen, GUO Ruihua. S-type Heterojunction of MOS2/g-C3N4: Construction and Photocatalysis [J]. Journal of Inorganic Materials, 2023, 38(10): 1176-1182. |
[11] | MA Xinquan, LI Xibao, CHEN Zhi, FENG Zhijun, HUANG Juntong. BiOBr/ZnMoO4 Step-scheme Heterojunction: Construction and Photocatalytic Degradation Properties [J]. Journal of Inorganic Materials, 2023, 38(1): 62-70. |
[12] | WANG Ruyi, XU Guoliang, YANG Lei, DENG Chonghai, CHU Delin, ZHANG Miao, SUN Zhaoqi. p-n Heterostructured BiVO4/g-C3N4 Photoanode: Construction and Its Photoelectrochemical Water Splitting Performance [J]. Journal of Inorganic Materials, 2023, 38(1): 87-96. |
[13] | CHEN Shikun, WANG Chuchu, CHEN Ye, LI Li, PAN Lu, WEN Guilin. Magnetic Ag2S/Ag/CoFe1.95Sm0.05O4 Z-scheme Heterojunction: Preparation and Its Photocatalytic Degradation Property [J]. Journal of Inorganic Materials, 2022, 37(12): 1329-1336. |
[14] | GAO Wa, XIONG Yujie, WU Congping, ZHOU Yong, ZOU Zhigang. Recent Progress on Photocatalytic CO2 Reduction with Ultrathin Nanostructures [J]. Journal of Inorganic Materials, 2022, 37(1): 3-14. |
[15] | LIU Peng, WU Shimiao, WU Yunfeng, ZHANG Ning. Synthesis of Zn0.4(CuGa)0.3Ga2S4/CdS Photocatalyst for CO2 Reduction [J]. Journal of Inorganic Materials, 2022, 37(1): 15-21. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||