Journal of Inorganic Materials ›› 2025, Vol. 40 ›› Issue (5): 504-510.DOI: 10.15541/jim20240457
• RESEARCH ARTICLE • Previous Articles Next Articles
CHEN Yi(), QIU Haipeng(
), CHEN Mingwei, XU Hao, CUI Heng
Received:
2024-11-01
Revised:
2024-12-19
Published:
2025-05-20
Online:
2024-12-27
Contact:
QIU Haipeng, professor. E-mail: hpqiu07@163.comAbout author:
CHEN Yi (1992-), male, engineer. E-mail: chenyi28@iccas.ac.cn
Supported by:
CLC Number:
CHEN Yi, QIU Haipeng, CHEN Mingwei, XU Hao, CUI Heng. SiC/SiC Composite: Matrix Boron Modification and Mechanical Properties[J]. Journal of Inorganic Materials, 2025, 40(5): 504-510.
Entry | Impregnating agent type | Composite label |
---|---|---|
1 | PCS 50% xylene solution | C0 |
2 | BP-1 solution | C1 |
3 | BP-2 solution | C2 |
Table 1 SiC/SiC composite numbers and their impregnating agent types
Entry | Impregnating agent type | Composite label |
---|---|---|
1 | PCS 50% xylene solution | C0 |
2 | BP-1 solution | C1 |
3 | BP-2 solution | C2 |
Entry | Precursor type | Ceramic yield/% |
---|---|---|
1 | PCS 50% xylene solution | 68 |
2 | BP-1 solution | 79 |
3 | BP-2 solution | 81 |
4 | Borane pyridine | 49 |
5 | Borane pyridine 10% xylene solution | 18 |
Table 2 Types of ceramic precursor and their tube furnace ceramic yields
Entry | Precursor type | Ceramic yield/% |
---|---|---|
1 | PCS 50% xylene solution | 68 |
2 | BP-1 solution | 79 |
3 | BP-2 solution | 81 |
4 | Borane pyridine | 49 |
5 | Borane pyridine 10% xylene solution | 18 |
Entry | Precursor type | O/% | C/% | Si/% | B/% | N/% |
---|---|---|---|---|---|---|
1 | PCS | 1.1 | 39.9 | 59.0 | 0 | 0 |
2 | BP-1 | 1.5 | 42.1 | 53.3 | 1.7 | 1.4 |
3 | BP-2 | 1.2 | 32.8 | 61.0 | 2.2 | 2.8 |
Table 3 Types of ceramic precursor and element contents (in mass) of derived ceramic
Entry | Precursor type | O/% | C/% | Si/% | B/% | N/% |
---|---|---|---|---|---|---|
1 | PCS | 1.1 | 39.9 | 59.0 | 0 | 0 |
2 | BP-1 | 1.5 | 42.1 | 53.3 | 1.7 | 1.4 |
3 | BP-2 | 1.2 | 32.8 | 61.0 | 2.2 | 2.8 |
Entry | SiC/SiC composite | Density/ (g·cm-3) | Porosity/% |
---|---|---|---|
1 | C0 | 2.37±0.01 | 7.80±0.72 |
2 | C1 | 2.35±0.02 | 8.40±1.02 |
3 | C2 | 2.38±0.03 | 6.27±0.88 |
Table 4 Apparent density and porosity of SiC/SiC composites
Entry | SiC/SiC composite | Density/ (g·cm-3) | Porosity/% |
---|---|---|---|
1 | C0 | 2.37±0.01 | 7.80±0.72 |
2 | C1 | 2.35±0.02 | 8.40±1.02 |
3 | C2 | 2.38±0.03 | 6.27±0.88 |
[1] | 成来飞. 陶瓷基复合材料强韧化与应用基础. 北京: 化学工业出版社, 2019. |
[2] | 邹豪, 王宇, 刘刚, 等. 碳化硅纤维增韧碳化硅陶瓷基复合材料的发展现状及其在航空发动机上的应用. 航空制造技术, 2017(15): 76. |
[3] | 张立同. 纤维增韧碳化硅陶瓷复合材料:模拟、表征与设计. 北京: 化学工业出版社, 2009. |
[4] | NASLAIN R R. SiC-matrix composites: nonbrittle ceramics for thermo-structural application. International Journal of Applied Ceramic Technology, 2005, 2(2): 75. |
[5] | DARZENS S, FARIZY G, VICENS J, et al. High temperature ceramic matrix composites. Hoboken: John Wiley & Sons, Inc., 2001: 211- 217. |
[6] | KOTANI M, KOHYAMA A, OKAMURA K, et al. Fabrication of high performance SiC/SiC composite by polymer impregnation and pyrolysis method//USTUNDAG E, FISCHMAN G. 23rd Annual Conference on Composites, Advanced Ceramics, Materials, and Structures: B:Ceramic Engineering and Science Proceedings. Hoboken: John Wiley & Sons, Icn., 1999: 309-316. |
[7] | GOUJARD S R, VANDENBULCKE L, REY J, et al. Process for the manufacture of a refractory composite material protected against corrosion: US5246736A. 1993-09-21. |
[8] | LAMOUROUX F, BERTRAND S, PAILLER R, et al. A multilayer ceramic matrix for oxidation resistant carbon fibers-reinforced CMCs. Key Engineering Materials, 1999, 164/165: 365. |
[9] | LAMOUROUX F, BERTRAND S, PAILLER R, et al. Oxidation- resistant carbon-fiber-reinforced ceramic-matrix composites. Composites Science and Technology, 1999, 59(7): 1073. |
[10] | RUGGLES-WRENN M B, POPE M T, ZENS T W. Creep behavior in interlaminar shear of a Hi-NicalonTM/SiC-B4C composite at 1200 ℃ in air and in steam. Materials Science and Engineering: A, 2014, 610: 279. |
[11] | 张立同, 成来飞, 徐永东, 等. 自愈合碳化硅陶瓷基复合材料研究及应用进展. 航空材料学报, 2006, 26(3): 226. |
[12] | CHEN M, QIU H, ZHANG Q, et al. Influence of precursor concentration on the densification efficiency and properties of SiC/SiC composites. International Journal of Applied Ceramic Technology, 2022, 19(6): 3238. |
[13] | CHEN Y, CHEN M, XIE W, et al. Influence of polycarbosilane composition on the properties of SiC/SiC composite fabricated by precursor infiltration and pyrolysis process. International Journal of Applied Ceramic Technology, 2024, 21(5): 3237. |
[14] | HU J, LIU C, YE F, et al. A review on high-performance SiCf/SiC composites prepared by PIP process. Journal of Materials Research and Technology, 2024, 33: 7216. |
[15] | SONG C, YE F, CHENG L, et al. Long-term ceramic matrix composite for aeroengine. Journal of Advanced Ceramics, 2022, 11(9): 1343. |
[16] | 张立同, 成来飞. 自愈合陶瓷基复合材料制备与应用基础. 北京: 化学工业出版社, 2015. |
[17] | LUAN X, XU X, ZOU Y, et al. Wet oxidation behavior of SiC/(SiC-SiBCN)x composites prepared by CVI combined with PIOP process. Journal of the American Ceramic Society, 2019, 102(10): 6239. |
[18] | CHEN M, QIU H, XIE W, et al. Influence of precursor composition on oxidation behavior of SiBCN multiphase ceramic and oxidation resistance of SiC/SiBCN composites. Journal of the Australian Ceramic Society, 2022, 58(2): 575. |
[19] | LUAN X, XU X, WANG L, et al. Self-healing enhancing tensile creep of 2D-satin weave SiC/(SiC-SiBCN)x composites in wet oxygen environment. Journal of the European Ceramic Society, 2020, 40(10): 3509. |
[20] | CAO F, LI X D, RYU J H, et al. Modification of polycarbosilane by polyborazine as a precursor for oxygen-free SiC fibers. Journal of Materials Chemistry, 2003, 13(8): 1914. |
[21] | PUERTA A R, REMSEN E E, BRADLEY M G, et al. Synthesis and ceramic conversion reactions of 9-BBN-modified allylhydridopolycarbosilane: a new single-source precursor to boron-modified silicon carbide. Chemistry of Materials, 2003, 15(2): 478. |
[22] | YU Z, HUANG M, FANG Y, et al. Modification of a liquid polycarbosilane with 9-BBN as a high-ceramic-yield precursor for SiC. Reactive and Functional Polymers, 2010, 70(6): 334. |
[23] | VIARD A, FONBLANC D, LOPEZ-FERBER D, et al. Polymer derived Si-B-C-N ceramics: 30 years of research. Advanced Engineering Materials, 2018, 20(10): 1800360. |
[24] | ANAND R, MADHAVI V, LU K. Effect of boron on phase, nanostructure, and thermal stability of polycarbosilane-derived SiC ceramics. Ceramics International, 2024, 50(24): 53701. |
[25] | BALESTRAT M, DIZ ACOSTA E, HANZEL O, et al. Additive-free low temperature sintering of amorphous SiBC powders derived from boron-modified polycarbosilanes: toward the design of SiC with tunable mechanical, electrical and thermal properties. Journal of the European Ceramic Society, 2020, 40(7): 2604. |
[26] | 陶孟, 胡继东, 俸翔, 等. 一种硼改性聚碳硅烷树脂及其制备方法: CN109438712B. 2021-06-11. |
[27] | 莫高明, 宋育杰, 陈海俊, 等. 一种液态可固化含硼聚碳硅烷及其制备方法: CN110698678A. 2020-01-17. |
[28] | 裴亚星. 单源聚合物先驱体法制备SiC基超高温纳米复相陶瓷. 厦门: 厦门大学硕士学位论文, 2017. |
[29] | YU Z, FANG Y, HUANG M, et al. Preparation of a liquid boron-modified polycarbosilane and its ceramic conversion to dense SiC ceramics. Polymers for Advanced Technologies, 2011, 22(12): 2409. |
[30] | 邵长伟, 王军, 王浩, 等. 一种含硼碳化硅纤维的制备方法: CN104790068A. 2015-07-22. |
[31] | 董志军, 余汉青, 李轩科, 等. 一种硼掺杂碳化硅纤维及其制备方法: CN108315837A. 2018-07-24. |
[32] | BILL J, RIEDEL R. Boron carbide nitride derived from amine- boranes. MRS Online Proceedings Library Archive, 1992, 271: 839. |
[33] | RIEDEL R, BILL J, PASSING G. A novel carbon material derived from pyridine-borane. Advanced Materials, 1991, 3(11): 551. |
[34] | BILL J, FRIESS M, RIEDEL R. Conversion of amine-boranes to boron carbide nitride. European journal of Solid State and Inorganic Chemistry, 1992, 29: 195. |
[35] | 王天一. BCN陶瓷制备工艺优化及微结构调控研究. 天津: 河北工业大学硕士学位论文, 2023. |
[36] | HE L, ZHANG Z, YANG X, et al. Liquid polycarbosilanes: synthesis and evaluation as precursors for SiC ceramic. Polymer International, 2015, 64(8): 979. |
[1] | SUN Yuxuan, WANG Zheng, SHI Xue, SHI Ying, DU Wentong, MAN Zhenyong, ZHENG Liaoying, LI Guorong. Defect Dipole Thermal-stability to the Electro-mechanical Properties of Fe Doped PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(5): 545-551. |
[2] | CUI Ning, ZHANG Yuxin, WANG Lujie, LI Tongyang, YU Yuan, TANG Huaguo, QIAO Zhuhui. Single-phase Formation Process and Carbon Vacancy Regulation of (TiVNbMoW)Cx High-entropy Ceramics [J]. Journal of Inorganic Materials, 2025, 40(5): 511-520. |
[3] | LI Ziwei, GONG Weilu, CUI Haifeng, YE Li, HAN Weijian, ZHAO Tong. (Zr, Hf, Nb, Ta, W)C-SiC Composite Ceramics: Preparation via Precursor Route and Properties [J]. Journal of Inorganic Materials, 2025, 40(3): 271-280. |
[4] | GAO Chenguang, SUN Xiaoliang, CHEN Jun, LI Daxin, CHEN Qingqing, JIA Dechang, ZHOU Yu. SiBCN-rGO Ceramic Fibers Based on Wet Spinning Technology: Microstructure, Mechanical and Microwave-absorbing Properties [J]. Journal of Inorganic Materials, 2025, 40(3): 290-296. |
[5] | MU Haojie, ZHANG Yuanjiang, YU Bin, FU Xiumei, ZHOU Shibin, LI Xiaodong. Preparation and Properties of ZrO2 Doped Y2O3-MgO Nanocomposite Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 281-289. |
[6] | WANG Yueyue, HUANG Jiahui, KONG Hongxing, LI Huaizhu, YAO Xiaohong. Silver Loaded Radial Mesoporous Silica: Preparation and Application in Dental Resins [J]. Journal of Inorganic Materials, 2025, 40(1): 77-83. |
[7] | FAN Wugang, CAO Xiong, ZHOU Xiang, LI Ling, ZHAO Guannan, ZHANG Zhaoquan. Anticorrosion Performance of 8YSZ Ceramics in Simulated Aqueous Environment of Pressurized Water Reactor [J]. Journal of Inorganic Materials, 2024, 39(7): 803-809. |
[8] | WU Yuhao, PENG Renci, CHENG Chunyu, YANG Li, ZHOU Yichun. First-principles Study on Mechanical Properties and Melting Curve of HfxTa1-xC System [J]. Journal of Inorganic Materials, 2024, 39(7): 761-768. |
[9] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[10] | SUN Haiyang, JI Wei, WANG Weimin, FU Zhengyi. Design, Fabrication and Properties of Periodic Ordered Structural Composites with TiB-Ti Units [J]. Journal of Inorganic Materials, 2024, 39(6): 662-670. |
[11] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[12] | LIU Guoang, WANG Hailong, FANG Cheng, HUANG Feilong, YANG Huan. Effect of B4C Content on Mechanical Properties and Oxidation Resistance of (Ti0.25Zr0.25Hf0.25Ta0.25)B2-B4C Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 697-706. |
[13] | SU Yi, SHI Yangfan, JIA Chenglan, CHI Pengtao, GAO Yang, MA Qingsong, CHEN Sian. Microstructure and Properties of C/HfC-SiC Composites Prepared by Slurry Impregnation Assisted Precursor Infiltration Pyrolysis [J]. Journal of Inorganic Materials, 2024, 39(6): 726-732. |
[14] | ZHANG Rui, ZHANG Kan, YUAN Mengya, GU Xinlei, ZHENG Weitao. Nitrogen Vacancy Regulated Lattice Distortion on Improvement of (NbMoTaW)Nx Thin Films: Mechanical Properties and Wear Resistance [J]. Journal of Inorganic Materials, 2024, 39(6): 715-725. |
[15] | ZHANG Yuchen, LU Zhiyao, HE Xiaodong, SONG Guangping, ZHU Chuncheng, ZHENG Yongting, BAI Yuelei. Predictions of Phase Stability and Properties of S-group Elements Containing MAX Borides [J]. Journal of Inorganic Materials, 2024, 39(2): 225-232. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||