Journal of Inorganic Materials
Previous Articles Next Articles
CHEN Yi, QIU Haipeng, CHEN Mingwei, XU Hao, CUI Heng
Received:
2024-11-01
Revised:
2024-12-19
Contact:
QIU Haipeng, professor. E-mail: hpqiu07@163.com
About author:
CHEN Yi(1992-), male, PhD candidate. E-mail: chenyi28@iccas.ac.cn
Supported by:
CLC Number:
CHEN Yi, QIU Haipeng, CHEN Mingwei, XU Hao, CUI Heng. Matrix Boron Modification Methods and Mechanical Properties of SiC/SiC Composite[J]. Journal of Inorganic Materials, DOI: 10.15541/jim20240457.
[1] 成来飞. 陶瓷基复合材料强韧化与应用基础. 化学工业出版社, 2019. [2] 邹豪, 王宇, 刘刚, 等. 碳化硅纤维增韧碳化硅陶瓷基复合材料的发展现状及其在航空发动机上的应用. 航空制造技术, 2017(15): 76. [3] 张立同. 纤维增韧碳化硅陶瓷复合材料: 模拟、表征与设计. 化学工业出版社, 2009. [4] NASLAIN R R.SiC-Matrix composites: nonbrittle ceramics for thermo-structural application.International Journal of Applied Ceramic Technology, 2005, 2(2): 75. [5] DARZENS S, FARIZY G, VICENS J, et al. High Temperature Ceramic Matrix Composites. John Wiley & Sons, Ltd, 2001: 211-217. [6] KOTANI M, KOHYAMA A, OKAMURA K, et al. Fabrication of high performance SiC/SiC composite by polymer impregnation and pyrolysis method. 23rd Annual Conference on Composites, Advanced Ceramics, Materials, and Structures: B: Ceramic Engineering and Science Proceedings. John Wiley & Sons, Ltd, 1999: 309-316. [7] GOUJARD S R, VANDENBULCKE L, REY J, et al. Process for the manufacture of a refractory composite material protected against corrosion. US5246736A Process for the manufacture of a refractory composite material protected against corrosion. US5246736A,1993-09-21. [8] LAMOUROUX F, BERTRAND S, PAILLER R, et al. A multilayer ceramic matrix for oxidation resistant carbon fibers-reinforced CMCs. Key Engineering Materials A multilayer ceramic matrix for oxidation resistant carbon fibers-reinforced CMCs. Key Engineering Materials, 1999, 164-165: 365. [9] LAMOUROUX F, BERTRAND S, PAILLER R,et al. Oxidation-resistant carbon-fiber-reinforced ceramic-matrix composites. Composites Science and Technology, 1999, 59(7): 1073. [10] RUGGLES-WRENN M B, POPE M T, ZENS T W. Creep behavior in interlaminar shear of a Hi-NicalonTM/SiC-B4C composite at 1200 °C in air and in steam.Materials Science and Engineering: A, 2014, 610: 279. [11] 张立同, 成来飞, 徐永东, 等. 自愈合碳化硅陶瓷基复合材料研究及应用进展. 航空材料学报, 2006(03): 226. [12] CHEN M, QIU H, ZHANG Q,et al. Influence of precursor concentration on the densification efficiency and properties of SiC/SiC composites. International Journal of Applied Ceramic Technology, 2022, 19(6): 3238. [13] CHEN Y, CHEN M, XIE W, et al. Influence of polycarbosilane composition on the properties of SiC/SiC composite fabricated by precursor infiltration and pyrolysis process. International Journal of Applied Ceramic Technology, 2024, 21(5): 3237. [14] HU J, LIU C, YE F,et al. A review on high-performance SiCf/SiC composites prepared by PIP process. Journal of Materials Research and Technology, 2024, 33: 7216. [15] SONG C, YE F, CHENG L,et al. Long-term ceramic matrix composite for aeroengine. Journal of Advanced Ceramics, 2022, 11(9): 1343. [16] 张立同, 成来飞. 自愈合陶瓷基复合材料制备与应用基础. 化学工业出版社, 2015. [17] LUAN X, XU X, ZOU Y,et al. Wet oxidation behavior of SiC/(SiC-SiBCN)x composites prepared by CVI combined with PIOP process. Journal of the American Ceramic Society, 2019, 102(10): 6239. [18] CHEN M, QIU H, XIE W,et al. Influence of precursor composition on oxidation behavior of SiBCN multiphase ceramic and oxidation resistance of SiC/SiBCN composites. Journal of the Australian Ceramic Society, 2022, 58(2): 575. [19] LUAN X, XU X, WANG L,et al. Self-healing enhancing tensile creep of 2D-satin weave SiC/(SiC-SiBCN)x composites in wet oxygen environment. Journal of the European Ceramic Society, 2020, 40(10): 3509. [20] CAO F, LI X D, RYU J H, et al. Modification of polycarbosilane by polyborazine as a precursor for oxygen-free SiC fibers. Journal of Materials Chemistry, 2003, 13(8): 1914. [21] PUERTA A R, REMSEN E E, BRADLEY M G, et al. Synthesis and ceramic conversion reactions of 9-BBN-modified allylhydridopolycarbosilane: a new single-source precursor to boron-modified silicon carbide. Chemistry of Materials, 2003, 15(2): 478. [22] YU Z, HUANG M, FANG Y, et al. Modification of a liquid polycarbosilane with 9-BBN as a high-ceramic-yield precursor for SiC. Reactive and Functional Polymers, 2010, 70(6): 334. [23] VIARD A, FONBLANC D, LOPEZ-FERBER D,et al. Polymer derived Si-B-C-N ceramics: 30 years of research. Advanced Engineering Materials, 2018, 20(10): 1800360. [24] ANAND R, MADHAVI V, LU K.Effect of boron on phase, nanostructure, and thermal stability of polycarbosilane-derived SiC ceramics.Ceramics International, 2024, 50(24): 53701. [25] BALESTRAT M, DIZ ACOSTA E, HANZEL O,et al. Additive-free low temperature sintering of amorphous SiBC powders derived from boron-modified polycarbosilanes: toward the design of SiC with tunable mechanical, electrical and thermal properties. Journal of the European Ceramic Society, 2020, 40(7): 2604. [26] 陶孟, 胡继东, 俸翔, 等. 一种硼改性聚碳硅烷树脂及其制备方法. CN109438712B.2021-06-11. [27] 莫高明, 宋育杰, 陈海俊, 等. 一种液态可固化含硼聚碳硅烷及其制备方法. CN110698678A.2020-01-17. [28] 裴亚星. 单源聚合物先驱体法制备SiC基超高温纳米复相陶瓷. 厦门:厦门大学硕士学位论文, 2017. [29] YU Z, FANG Y, HUANG M,et al. Preparation of a liquid boron-modified polycarbosilane and its ceramic conversion to dense SiC ceramics. Polymers for Advanced Technologies, 2011, 22(12): 2409. [30] 邵长伟, 王军, 王浩, 等. 一种含硼碳化硅纤维的制备方法. CN104790068A.2015-07-22. [31] 董志军, 余汉青, 李轩科, 等. 一种硼掺杂碳化硅纤维及其制备方法. CN108315837A.2018-07-24. [32] BILL J, RIEDEL R.Boron carbide nitride derived from amine-boranes.MRS Online Proceedings Library Archive, 1992, 271. [33] RIEDEL R, BILL J, PASSING G.A novel carbon material derived from pyridine-borane.Advanced Materials, 1991, 3(11): 551. [34] BILL J, FRIESS M, RIEDEL R.Conversion of amine-boranes to boron carbide nitride.European journal of Solid State and Inorganic Chemistry, 1992, 29: 195. [35] 王天一. BCN陶瓷制备工艺优化及微结构调控研究. 天津:河北工业大学硕士学位论文, 2023. [36] HE L, ZHANG Z, YANG X,et al. Liquid polycarbosilanes: synthesis and evaluation as precursors for SiC ceramic. Polymer International, 2015, 64(8): 979. |
[1] | LI Wei, XU Zhiming, GOU Yanzi, YIN Senhu, YU Yiping, WANG Song. Preparation and Performance of Sintered SiC Fiber-bonded Ceramics [J]. Journal of Inorganic Materials, 2025, 40(2): 177-183. |
[2] | FAN Wugang, CAO Xiong, ZHOU Xiang, LI Ling, ZHAO Guannan, ZHANG Zhaoquan. Anticorrosion Performance of 8YSZ Ceramics in Simulated Aqueous Environment of Pressurized Water Reactor [J]. Journal of Inorganic Materials, 2024, 39(7): 803-809. |
[3] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[4] | SUN Haiyang, JI Wei, WANG Weimin, FU Zhengyi. Design, Fabrication and Properties of Periodic Ordered Structural Composites with TiB-Ti Units [J]. Journal of Inorganic Materials, 2024, 39(6): 662-670. |
[5] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[6] | LIU Guoang, WANG Hailong, FANG Cheng, HUANG Feilong, YANG Huan. Effect of B4C Content on Mechanical Properties and Oxidation Resistance of (Ti0.25Zr0.25Hf0.25Ta0.25)B2-B4C Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 697-706. |
[7] | SU Yi, SHI Yangfan, JIA Chenglan, CHI Pengtao, GAO Yang, MA Qingsong, CHEN Sian. Microstructure and Properties of C/HfC-SiC Composites Prepared by Slurry Impregnation Assisted Precursor Infiltration Pyrolysis [J]. Journal of Inorganic Materials, 2024, 39(6): 726-732. |
[8] | LI Lei, CHENG Qunfeng. Recent Advances in the High Performance MXenes Nanocomposites [J]. Journal of Inorganic Materials, 2024, 39(2): 153-161. |
[9] | LIU Yanyan, XIE Xi, LIU Zengqian, ZHANG Zhefeng. Metal Matrix Composites Reinforced by MAX Phase Ceramics: Fabrication, Properties and Bioinspired Designs [J]. Journal of Inorganic Materials, 2024, 39(2): 145-152. |
[10] | WANG Bo, CAI Delong, ZHU Qishuai, LI Daxin, YANG Zhihua, DUAN Xiaoming, LI Yanan, WANG Xuan, JIA Dechang, ZHOU Yu. Mechanical Properties and Thermal Shock Resistance of SrAl2Si2O8 Reinforced BN Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(10): 1182-1188. |
[11] | NI Xiaoshi, LIN Ziyang, QIN Muyan, YE Song, WANG Deping. Bioactivity and Mechanical Property of PMMA Bone Cement: Effect of Silanized Mesoporous Borosilicate Bioglass Microspheres [J]. Journal of Inorganic Materials, 2023, 38(8): 971-977. |
[12] | FU Shi, YANG Zengchao, LI Jiangtao. Progress of High Strength and High Thermal Conductivity Si3N4 Ceramics for Power Module Packaging [J]. Journal of Inorganic Materials, 2023, 38(10): 1117-1132. |
[13] | WU Dongjiang, ZHAO Ziyuan, YU Xuexin, MA Guangyi, YOU Zhulin, REN Guanhui, NIU Fangyong. Direct Additive Manufacturing of Al2O3-TiCp Composite Ceramics by Laser Directed Energy Deposition [J]. Journal of Inorganic Materials, 2023, 38(10): 1183-1192. |
[14] | AN Wenran, HUANG Jingqi, LU Xiangrong, JIANG Jianing, DENG Longhui, CAO Xueqiang. Effect of Heat-treatment Temperature on Thermal and Mechanical Properties of LaMgAl11O19 Coating [J]. Journal of Inorganic Materials, 2022, 37(9): 925-932. |
[15] | ZHANG Ye, ZENG Yuping. Progress of Porous Silicon Nitride Ceramics Prepared via Self-propagating High Temperature Synthesis [J]. Journal of Inorganic Materials, 2022, 37(8): 853-864. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||