Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (2): 225-232.DOI: 10.15541/jim20230188
Special Issue: 【材料计算】计算材料(202409); 【信息功能】MAX层状材料、MXene及其他二维材料(202409)
• RESEARCH ARTICLE • Previous Articles
ZHANG Yuchen1(), LU Zhiyao1, HE Xiaodong1, SONG Guangping1, ZHU Chuncheng2, ZHENG Yongting1, BAI Yuelei1(
)
Received:
2023-04-14
Revised:
2023-07-07
Published:
2023-08-21
Online:
2023-08-21
Contact:
BAI Yuelei, professor. E-mail: baiyl@hit.edu.cnAbout author:
ZHANG Yuchen(2001-), male, undergraduate student. E-mail: 1696409105@qq.com
Supported by:
CLC Number:
ZHANG Yuchen, LU Zhiyao, HE Xiaodong, SONG Guangping, ZHU Chuncheng, ZHENG Yongting, BAI Yuelei. Predictions of Phase Stability and Properties of S-group Elements Containing MAX Borides[J]. Journal of Inorganic Materials, 2024, 39(2): 225-232.
Compound | a/Å | c/Å | V/Å3 | Most competing phases | ΔHcomp/(eV·atom-1) |
---|---|---|---|---|---|
Zr2SB | 3.521 | 12.302 | 132.12 | 0.6Zr2S + 0.1Zr3S4 + 0.5ZrB2 | -0.0749 |
Exp.[ | 3.500 | 12.271 | 130.19 | ||
Hf2SB | 3.484 | 12.122 | 127.40 | 0.5Hf2S + 0.5HfS + 0.5HfB2 | -0.0512 |
Exp.[ | 3.467 | 12.105 | 126.01 | ||
Zr2SeB | 3.573 | 12.733 | 140.78 | 0.5Zr2Se + 0.5ZrSe + 0.5ZrB2 | -0.0259 |
Exp.[ | 3.644 | 12.632 | 145.27 | ||
Hf2SeB | 3.538 | 12.544 | 136.01 | 0.0185Hf23Se25 + 0.5370Hf2Se + 0.5HfB2 | -0.0838 |
Exp.[ | 3.523 | 12.478 | 134.11 | ||
Hf2TeB | 3.619 | 13.239 | 150.14 | 0.5Hf3Te2 + 0.5HfB2 | -0.0100 |
Exp.[ | 3.605 | 13.127 | 147.72 |
Table 1 M2AB (M = Zr, Hf; A = S, Se, Te) of which formation enthalpy ΔHcomp<0
Compound | a/Å | c/Å | V/Å3 | Most competing phases | ΔHcomp/(eV·atom-1) |
---|---|---|---|---|---|
Zr2SB | 3.521 | 12.302 | 132.12 | 0.6Zr2S + 0.1Zr3S4 + 0.5ZrB2 | -0.0749 |
Exp.[ | 3.500 | 12.271 | 130.19 | ||
Hf2SB | 3.484 | 12.122 | 127.40 | 0.5Hf2S + 0.5HfS + 0.5HfB2 | -0.0512 |
Exp.[ | 3.467 | 12.105 | 126.01 | ||
Zr2SeB | 3.573 | 12.733 | 140.78 | 0.5Zr2Se + 0.5ZrSe + 0.5ZrB2 | -0.0259 |
Exp.[ | 3.644 | 12.632 | 145.27 | ||
Hf2SeB | 3.538 | 12.544 | 136.01 | 0.0185Hf23Se25 + 0.5370Hf2Se + 0.5HfB2 | -0.0838 |
Exp.[ | 3.523 | 12.478 | 134.11 | ||
Hf2TeB | 3.619 | 13.239 | 150.14 | 0.5Hf3Te2 + 0.5HfB2 | -0.0100 |
Exp.[ | 3.605 | 13.127 | 147.72 |
Compound | c11/GPa | c12/GPa | c13/GPa | c33/GPa | c44/GPa | G/GPa | B/GPa | E/GPa | μ | G/B | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|
Zr2SB | 264 | 76 | 91 | 298 | 135 | 108 | 148 | 262 | 0.206 | 0.730 | This work |
Hf2SB | 296 | 74 | 97 | 318 | 147 | 122 | 160 | 292 | 0.196 | 0.763 | This work |
Zr2SeB | 252 | 64 | 83 | 277 | 125 | 105 | 137 | 250 | 0.197 | 0.766 | This work |
Hf2SeB | 275 | 66 | 90 | 292 | 134 | 113 | 148 | 270 | 0.195 | 0.764 | This work |
Zr2TeB | 198 | 67 | 78 | 225 | 104 | 79 | 118 | 194 | 0.226 | 0.669 | This work |
Hf2TeB | 225 | 61 | 88 | 257 | 119 | 93 | 130 | 225 | 0.211 | 0.715 | This work |
Ti3SiC2 | 366 | 94 | 100 | 352 | 153 | 142 | 187 | 339 | 0.192 | 0.759 | [ |
Ti3GeC2 | 357 | 94 | 97 | 333 | 143 | 142 | 182 | 340 | 0.196 | 0.780 | [ |
Hf2InC | 309 | 81 | 80 | 273 | 98 | 105 | 152 | 256 | 0.21 | 0.691 | [ |
Hf2SnC | 251 | 71 | 107 | 238 | 101 | 87 | 145 | 218 | 0.25 | 0.600 | [ |
Table 2 Second-order elastic constants and engineering elastic moduli of M2AB (M = Zr, Hf; A = S, Se, Te) and several typical MAX phases
Compound | c11/GPa | c12/GPa | c13/GPa | c33/GPa | c44/GPa | G/GPa | B/GPa | E/GPa | μ | G/B | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|
Zr2SB | 264 | 76 | 91 | 298 | 135 | 108 | 148 | 262 | 0.206 | 0.730 | This work |
Hf2SB | 296 | 74 | 97 | 318 | 147 | 122 | 160 | 292 | 0.196 | 0.763 | This work |
Zr2SeB | 252 | 64 | 83 | 277 | 125 | 105 | 137 | 250 | 0.197 | 0.766 | This work |
Hf2SeB | 275 | 66 | 90 | 292 | 134 | 113 | 148 | 270 | 0.195 | 0.764 | This work |
Zr2TeB | 198 | 67 | 78 | 225 | 104 | 79 | 118 | 194 | 0.226 | 0.669 | This work |
Hf2TeB | 225 | 61 | 88 | 257 | 119 | 93 | 130 | 225 | 0.211 | 0.715 | This work |
Ti3SiC2 | 366 | 94 | 100 | 352 | 153 | 142 | 187 | 339 | 0.192 | 0.759 | [ |
Ti3GeC2 | 357 | 94 | 97 | 333 | 143 | 142 | 182 | 340 | 0.196 | 0.780 | [ |
Hf2InC | 309 | 81 | 80 | 273 | 98 | 105 | 152 | 256 | 0.21 | 0.691 | [ |
Hf2SnC | 251 | 71 | 107 | 238 | 101 | 87 | 145 | 218 | 0.25 | 0.600 | [ |
Compound | M−A bond | M−B bond | kmin/kmax | Hmicro/GPa | Hmacro/GPa | |||
---|---|---|---|---|---|---|---|---|
d/nm | k/GPa | d/nm | k/GPa | |||||
Zr2SB | 0.26997 | 458.93 | 0.24124 | 612.75 | 0.7490 | 21.29 | 18.40 | |
Exp.[ | 0.26844 | 0.24032 | 9-12[ | |||||
Hf2SB | 0.26800 | 472.37 | 0.23722 | 652.32 | 0.7241 | 24.74 | 21.20 | |
Exp.[ | 0.26643 | 0.23688 | ||||||
Zr2SeB | 0.28062 | 442.87 | 0.24282 | 560.54 | 0.7901 | 21.09 | 19.30 | |
Exp.[ | 0.28071 | 0.24729 | ||||||
Hf2SeB | 0.27869 | 455.17 | 0.23899 | 595.24 | 0.7647 | 22.97 | 20.17 | |
Exp.[ | 0.27735 | 0.23789 | ||||||
Zr2TeB | 0.29743 | 432.53 | 0.24526 | 487.09 | 0.8880 | 14.45 | 13.12 | |
Hf2TeB | 0.29604 | 439.17 | 0.24156 | 517.33 | 0.8489 | 17.90 | 16.16 |
Table 3 Bond length, bond stiffness and kmin/kmax in M2AB (M = Zr, Hf; A = S, Se, Te)
Compound | M−A bond | M−B bond | kmin/kmax | Hmicro/GPa | Hmacro/GPa | |||
---|---|---|---|---|---|---|---|---|
d/nm | k/GPa | d/nm | k/GPa | |||||
Zr2SB | 0.26997 | 458.93 | 0.24124 | 612.75 | 0.7490 | 21.29 | 18.40 | |
Exp.[ | 0.26844 | 0.24032 | 9-12[ | |||||
Hf2SB | 0.26800 | 472.37 | 0.23722 | 652.32 | 0.7241 | 24.74 | 21.20 | |
Exp.[ | 0.26643 | 0.23688 | ||||||
Zr2SeB | 0.28062 | 442.87 | 0.24282 | 560.54 | 0.7901 | 21.09 | 19.30 | |
Exp.[ | 0.28071 | 0.24729 | ||||||
Hf2SeB | 0.27869 | 455.17 | 0.23899 | 595.24 | 0.7647 | 22.97 | 20.17 | |
Exp.[ | 0.27735 | 0.23789 | ||||||
Zr2TeB | 0.29743 | 432.53 | 0.24526 | 487.09 | 0.8880 | 14.45 | 13.12 | |
Hf2TeB | 0.29604 | 439.17 | 0.24156 | 517.33 | 0.8489 | 17.90 | 16.16 |
Fig. S2 Phonon dispersions (left) and density of states (right) of (a) Zr2SB, (b) Hf2SB, (c) Zr2SeB, (d) Hf2SeB, (e) Zr2TeB, and (f) Hf2TeB along the high symmetry directions
Compound | Included phase | a/Å | c/Å | V/Å3 | Most competing phases | ΔHcomp/(eV·atom-1) |
---|---|---|---|---|---|---|
Zr2SB | Zr, S, B, Zr2S, Zr3S4, Zr9S2, ZrS, ZrS2, ZrS3, ZrB2, B2S3, BS2 | 3.521 | 12.302 | 132.12 | 0.6Zr2S + 0.1Zr3S4 + 0.5ZrB2 | -0.0749 |
Exp.[ | 3.500 | 12.271 | 130.19 | |||
Zr3SB2 | 0.0833Zr9S2 + 0.5833ZrB2 + 0.8333Zr2SB | 0.0919 | ||||
Zr4SB3 | 0.1667Zr9S2 + 1.1667ZrB2 + 0.6667Zr2SB | 0.1588 | ||||
Hf2SB | Hf, S, B, Hf2S, HfS, HfS2, HfS3, HfB2, B2S3, BS2 | 3.484 | 12.122 | 127.40 | 0.5Hf2S + 0.5HfS + 0.5HfB2 | -0.0512 |
Exp.[ | 3.467 | 12.105 | 126.01 | |||
Hf3SB2 | 0.5Hf + 0.5HfB2 + Hf2SB | 0.0807 | ||||
Hf4SB3 | Hf + HfB2 + Hf2SB | 0.1422 | ||||
Zr2SeB | Zr, Se, B, Zr2Se, Zr2Se3, ZrSe, ZrSe2, ZrSe3, ZrB2, BSe2 | 3.573 | 12.733 | 140.78 | 0.5Zr2Se + 0.5ZrSe + 0.5ZrB2 | -0.0259 |
Exp.[ | 3.644 | 12.632 | 145.27 | |||
Zr3SeB2 | 0.5Zr + 0.5ZrB2 + Zr2SeB | 0.1649 | ||||
Zr4SeB3 | Zr + ZrB2 + Zr2SeB | 0.1559 | ||||
Hf2SeB | Hf, Se, B, Hf2Se, Hf2Se3, HfSe2, HfSe3, Hf23Se25, HfB2, BSe2 | 3.538 | 12.544 | 136.01 | 0.0185Hf23Se25 + 0.5370Hf2Se + 0.5HfB2 | -0.0838 |
Exp.[ | 3.523 | 12.478 | 134.11 | |||
Hf3SeB2 | 0.5Hf + 0.5HfB2 + Hf2SeB | 0.0836 | ||||
Hf4SeB3 | Hf + HfB2 + Hf2SeB | 0.1457 | ||||
Zr2TeB | Zr, Te, B, Zr2Te3, Zr3Te, Zr5Te4, ZrTe, ZrTe2, ZrTe3, ZrTe5, ZrB2 | 3.650 | 13.415 | 154.77 | 0.2143Zr5Te4 + 0.1429Zr3Te + 0.5ZrB2 | 0.0305 |
Zr3TeB2 | 0.1429Zr5Te4 + 0.4286Zr3Te + ZrB2 | 0.1321 | ||||
Zr4TeB3 | 0.0174Zr5Te4 + 0.7143Zr3Te + 1.5ZrB2 | 0.1960 | ||||
Hf2TeB | Hf, Te, B, Hf3Te2,Hf5Te4, HfTe2, HfTe5, HfB2 | 3.619 | 13.239 | 150.14 | 0.5Hf3Te2 + 0.5HfB2 | -0.0100 |
Exp.[ | 3.605 | 13.127 | 147.72 | |||
Hf3TeB2 | 0.5Hf + 0.5HfB2 + Hf2TeB | 0.0994 | ||||
Hf4TeB3 | Hf + HfB2 + Hf2TeB | 0.1613 |
Table S1 Formation enthalpy ΔHcomp of M2AB, M3AB2 and M4AB3 (M = Zr, Hf; A = S, Se, Te)
Compound | Included phase | a/Å | c/Å | V/Å3 | Most competing phases | ΔHcomp/(eV·atom-1) |
---|---|---|---|---|---|---|
Zr2SB | Zr, S, B, Zr2S, Zr3S4, Zr9S2, ZrS, ZrS2, ZrS3, ZrB2, B2S3, BS2 | 3.521 | 12.302 | 132.12 | 0.6Zr2S + 0.1Zr3S4 + 0.5ZrB2 | -0.0749 |
Exp.[ | 3.500 | 12.271 | 130.19 | |||
Zr3SB2 | 0.0833Zr9S2 + 0.5833ZrB2 + 0.8333Zr2SB | 0.0919 | ||||
Zr4SB3 | 0.1667Zr9S2 + 1.1667ZrB2 + 0.6667Zr2SB | 0.1588 | ||||
Hf2SB | Hf, S, B, Hf2S, HfS, HfS2, HfS3, HfB2, B2S3, BS2 | 3.484 | 12.122 | 127.40 | 0.5Hf2S + 0.5HfS + 0.5HfB2 | -0.0512 |
Exp.[ | 3.467 | 12.105 | 126.01 | |||
Hf3SB2 | 0.5Hf + 0.5HfB2 + Hf2SB | 0.0807 | ||||
Hf4SB3 | Hf + HfB2 + Hf2SB | 0.1422 | ||||
Zr2SeB | Zr, Se, B, Zr2Se, Zr2Se3, ZrSe, ZrSe2, ZrSe3, ZrB2, BSe2 | 3.573 | 12.733 | 140.78 | 0.5Zr2Se + 0.5ZrSe + 0.5ZrB2 | -0.0259 |
Exp.[ | 3.644 | 12.632 | 145.27 | |||
Zr3SeB2 | 0.5Zr + 0.5ZrB2 + Zr2SeB | 0.1649 | ||||
Zr4SeB3 | Zr + ZrB2 + Zr2SeB | 0.1559 | ||||
Hf2SeB | Hf, Se, B, Hf2Se, Hf2Se3, HfSe2, HfSe3, Hf23Se25, HfB2, BSe2 | 3.538 | 12.544 | 136.01 | 0.0185Hf23Se25 + 0.5370Hf2Se + 0.5HfB2 | -0.0838 |
Exp.[ | 3.523 | 12.478 | 134.11 | |||
Hf3SeB2 | 0.5Hf + 0.5HfB2 + Hf2SeB | 0.0836 | ||||
Hf4SeB3 | Hf + HfB2 + Hf2SeB | 0.1457 | ||||
Zr2TeB | Zr, Te, B, Zr2Te3, Zr3Te, Zr5Te4, ZrTe, ZrTe2, ZrTe3, ZrTe5, ZrB2 | 3.650 | 13.415 | 154.77 | 0.2143Zr5Te4 + 0.1429Zr3Te + 0.5ZrB2 | 0.0305 |
Zr3TeB2 | 0.1429Zr5Te4 + 0.4286Zr3Te + ZrB2 | 0.1321 | ||||
Zr4TeB3 | 0.0174Zr5Te4 + 0.7143Zr3Te + 1.5ZrB2 | 0.1960 | ||||
Hf2TeB | Hf, Te, B, Hf3Te2,Hf5Te4, HfTe2, HfTe5, HfB2 | 3.619 | 13.239 | 150.14 | 0.5Hf3Te2 + 0.5HfB2 | -0.0100 |
Exp.[ | 3.605 | 13.127 | 147.72 | |||
Hf3TeB2 | 0.5Hf + 0.5HfB2 + Hf2TeB | 0.0994 | ||||
Hf4TeB3 | Hf + HfB2 + Hf2TeB | 0.1613 |
Compound | Curve fitting equation (300-1300 K) | TEC (300-1300 K)/ K-1 |
---|---|---|
Zr2SB | CP = 0.83×10-2T + 96.9 - 1.28×106T-2 | 10.97×10-6 K-1 |
Hf2SB | CP = 0.74×10-2T + 96.6 - 1.25×106T-2 | 9.66×10-6 K-1 |
Zr2SeB | CP = 0.82×10-2T + 96.7 - 1.06×106T-2 | 11.11×10-6 K-1 |
Hf2SeB | CP = 1.28×10-2T + 94.4 - 0.89×106T-2 | 10.17×10-6 K-1 |
Zr2TeB | CP = 1.07×10-2T + 94.7 - 0.84×106T-2 | 12.63×10-6 K-1 |
Hf2TeB | CP = 0.83×10-2T + 96.1 - 0.87×106T-2 | 10.07×10-6 K-1 |
Table S2 Heat capacity at constant pressure and the average linear thermal expansion coefficient of M2AB (M = Zr, Hf; A = S, Se, Te) in the temperature range of 300-1300 K
Compound | Curve fitting equation (300-1300 K) | TEC (300-1300 K)/ K-1 |
---|---|---|
Zr2SB | CP = 0.83×10-2T + 96.9 - 1.28×106T-2 | 10.97×10-6 K-1 |
Hf2SB | CP = 0.74×10-2T + 96.6 - 1.25×106T-2 | 9.66×10-6 K-1 |
Zr2SeB | CP = 0.82×10-2T + 96.7 - 1.06×106T-2 | 11.11×10-6 K-1 |
Hf2SeB | CP = 1.28×10-2T + 94.4 - 0.89×106T-2 | 10.17×10-6 K-1 |
Zr2TeB | CP = 1.07×10-2T + 94.7 - 0.84×106T-2 | 12.63×10-6 K-1 |
Hf2TeB | CP = 0.83×10-2T + 96.1 - 0.87×106T-2 | 10.07×10-6 K-1 |
[1] |
OPEKA M M, TALMY I G, WUCHINA E J, et al. Mechanical, thermal, and oxidation properties of refractory hafnium and zirconium compounds. Journal of the European ceramic Society, 1999, 19(13/14): 2405.
DOI URL |
[2] |
ZHOU H J, ZHANG X Y, GAO L, et al. Ablation properties of ZrB2-SiC ultra-high temperature ceramic coatings. Journal of Inorganic Materials, 2013, 28(3): 256.
DOI URL |
[3] |
WILEY D, MANNING W, HUNTER JR O. Elastic properties of polycrystalline TiB2, ZrB2 and HfB2 from room temperature to 1300 K. Journal of the Less Common Metals, 1969, 18(2): 149.
DOI URL |
[4] |
GAO Dong, ZHANG Y, XU C L, et al. Formation mechanism of zircon phase in ZrB2-SiC ceramic composites during oxidation. Journal of Inorganic Materials, 2011, 26(4): 433.
DOI |
[5] |
BARSOUM M W. The MN+1AXN phases: a new class of solids: thermodynamically stable nanolaminates. Progress in Solid State Chemistry, 2000, 28(1-4): 201.
DOI URL |
[6] |
BAI Y, HE X, SUN Y, et al. Chemical bonding and elastic properties of Ti3AC2 phases (A= Si, Ge, and Sn): a first-principle study. Solid State Sciences, 2010, 12(7): 1220.
DOI URL |
[7] | RACKL T, EISENBURGER L, NIKLAUS R, et al. Syntheses and physical properties of the MAX phase boride Nb2SB and the solid solutions Nb2SBxC1-x(x= 0-1). Physical Review Materials, 2019, 3(5): 054001. |
[8] |
RACKL T, JOHRENDT D. The MAX phase borides Zr2SB and Hf2SB. Solid State Sciences, 2020, 106: 106316.
DOI URL |
[9] |
ZHANG Q, ZHOU Y, SAN X, et al. Zr2SeB and Hf2SeB: two new MAB phase compounds with the Cr2AlC-type MAX phase (211 phase) crystal structures. Journal of Advanced Ceramics, 2022, 11(11): 1764.
DOI |
[10] |
ZHANG Q, ZHOU Y, SAN X, et al. Thermal explosion synthesis of first Te-containing layered ternary Hf2TeB MAX phase. Journal of the European Ceramic Society, 2023, 43(1): 173.
DOI URL |
[11] |
QIN Y, ZHOU Y, FAN L, et al. Synthesis and characterization of ternary layered Nb2SB ceramics fabricated by spark plasma sintering. Journal of Alloys and Compounds, 2021, 878: 160344.
DOI URL |
[12] |
ZHANG Q, FU S, WAN D, et al. Synthesis and property characterization of ternary laminar Zr2SB ceramic. Journal of Advanced Ceramics, 2022, 11(5): 825.
DOI |
[13] | BARSOUM M W. MAX phases: properties of machinable ternary carbides and nitrides. John Wiley & Sons, 2013. |
[14] |
BARSOUM M, ZHEN T, KALIDINDI S, et al. Fully reversible, dislocation-based compressive deformation of Ti3SiC2 to 1 GPa. Nature Materials, 2003, 2(2): 107.
DOI |
[15] |
LIU Y, COOPER V R, WANG B, et al. Discovery of ABO3 perovskites as thermal barrier coatings through high-throughput first principles calculations. Materials Research Letters, 2019, 7(4): 145.
DOI URL |
[16] |
TOGO A, CHAPUT L, TANAKA I, et al. First-principles phonon calculations of thermal expansion in Ti3SiC2, Ti3AlC2, and Ti3GeC2. Physical Review B, 2010, 81(17): 174301.
DOI URL |
[17] |
BAI Y, HE X, WANG R. Lattice dynamics of Al-containing MAX-phase carbides: a first-principle study. Journal of Raman Spectroscopy, 2015, 46(9): 784.
DOI URL |
[18] |
DAHLQVIST M, ALLING B, ROS N J. Stability trends of MAX phases from first principles. Physical Review B, 2010, 81(22): 220102.
DOI URL |
[19] |
SHEN Y, SAUNDERS C N, BERNAL C M, et al. Anharmonic origin of the giant thermal expansion of NaBr. Physical Review Letters, 2020, 125(8): 085504.
DOI URL |
[20] | QI X X, SONG G P, YIN W L, et al. Analysis on phase stability and mechanical property of newly-discovered ternary layered boride Cr4AlB4. Journal of Inorganic Materials, 2020, 35(1): 53. |
[21] |
QI X, YIN W, JIN S, et al. Density-functional-theory predictions of mechanical behaviour and thermal properties as well as experimental hardness of the Ga-bilayer Mo2Ga2C. Journal of Advanced Ceramics, 2022, 11: 273.
DOI |
[22] |
QI X, HE X, YIN W, et al. Stability trend, weak bonding, and magnetic properties of the Al-and Si-containing ternary-layered borides MAB phases. Journal of the American Ceramic Society, 2023, 106(2): 1513.
DOI URL |
[23] |
KRESSE G, FURTHM LLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 1996, 54(16): 11169.
DOI URL |
[24] |
POPOOLA A, OLUYAMO S. Physical properties of some noble metal compounds from PAW-DFT calculations. Journal of Science and Technology (Ghana), 2014, 34(3): 47.
DOI URL |
[25] |
ZECCA L, GORI-GIORGI P, MORONI S, et al. Local density functional for the short-range part of the electron-electron interaction. Physical Review B, 2004, 70(20): 205127.
DOI URL |
[26] |
PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18): 3865.
DOI PMID |
[27] |
TOGO A, OBA F, TANAKA I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Physical Review B, 2008, 78(13): 134106.
DOI URL |
[28] |
HILL R. The elastic behaviour of a crystalline aggregate. Proceedings of the Physical Society Section A, 1952, 65(5): 349.
DOI URL |
[29] |
WOLVERTON C, ZUNGER A. First-principles theory of short-range order, electronic excitations, and spin polarization in Ni-V and Pd-V alloys. Physical Review B, 1995, 52(12): 8813.
PMID |
[30] |
WANG J, YE T N, GONG Y, et al. Discovery of hexagonal ternary phase Ti2InB2 and its evolution to layered boride TiB. Nature Communications, 2019, 10: 2284.
DOI |
[31] |
SAKAMAKI K, WADA H, NOZAKI H, et al. Carbosulfide superconductor. Solid State Communications, 1999, 112(6): 323.
DOI URL |
[32] |
KHAZAEI M, WANG J, ESTILI M, et al. Novel MAB phases and insights into their exfoliation into 2D MBenes. Nanoscale, 2019, 11(23): 11305.
DOI PMID |
[33] | BORN M, HUANG K, LAX M. Dynamical theory of crystal lattices. American Journal of Physics, 1955, 23(7): 474. |
[34] |
BARSOUM M W, RADOVIC M. Elastic and mechanical properties of the MAX phases. Annual Review of Materials Research, 2011, 41: 195.
DOI URL |
[35] |
PUGH S. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1954, 45(367): 823.
DOI URL |
[36] |
BAI Y, QI X, DUFF A, et al. Density functional theory insights into ternary layered boride MoAlB. Acta Materialia, 2017, 132: 69.
DOI URL |
[37] |
ALI M, HOSSAIN M, UDDIN M, et al. DFT insights into new B-containing 212 MAX phases: Hf2AB2 (A= In, Sn). Journal of Alloys and Compounds, 2021, 860: 158408.
DOI URL |
[38] |
MIAO N, WANG J, GONG Y, et al. Computational prediction of boron-based MAX phases and MXene derivatives. Chemistry of Materials, 2020, 32(16): 6947.
DOI URL |
[39] |
BOUHEMADOU A. First-principles study of structural, electronic and elastic properties of Nb4AlC3. Brazilian Journal of Physics, 2010, 40: 52.
DOI URL |
[40] |
CHEN XQ, NIU H, LI D, et al. Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics, 2011, 19(9): 1275.
DOI URL |
[41] |
GUO X, LI L, LIU Z, et al. Hardness of covalent compounds: roles of metallic component and d valence electrons. Journal of Applied Physics, 2008, 104(2): 023503.
DOI URL |
[42] |
XIANG H, FENG Z, LI Z, et al. First-principles investigations on elevated temperature elastic and thermodynamic properties of ZrB2 and HfB2. Journal of the American Ceramic Society, 2017, 100(8): 3662.
DOI URL |
[43] |
BLANCO M, FRANCISCO E, LUANA V. GIBBS: isothermal- isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Computer Physics Communications, 2004, 158(1): 57.
DOI URL |
[1] | FAN Wugang, CAO Xiong, ZHOU Xiang, LI Ling, ZHAO Guannan, ZHANG Zhaoquan. Anticorrosion Performance of 8YSZ Ceramics in Simulated Aqueous Environment of Pressurized Water Reactor [J]. Journal of Inorganic Materials, 2024, 39(7): 803-809. |
[2] | WU Yuhao, PENG Renci, CHENG Chunyu, YANG Li, ZHOU Yichun. First-principles Study on Mechanical Properties and Melting Curve of HfxTa1-xC System [J]. Journal of Inorganic Materials, 2024, 39(7): 761-768. |
[3] | JIN Yuxiang, SONG Erhong, ZHU Yongfu. First-principles Investigation of Single 3d Transition Metals Doping Graphene Vacancies for CO2 Electroreduction [J]. Journal of Inorganic Materials, 2024, 39(7): 845-852. |
[4] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[5] | SUN Haiyang, JI Wei, WANG Weimin, FU Zhengyi. Design, Fabrication and Properties of Periodic Ordered Structural Composites with TiB-Ti Units [J]. Journal of Inorganic Materials, 2024, 39(6): 662-670. |
[6] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[7] | LIU Guoang, WANG Hailong, FANG Cheng, HUANG Feilong, YANG Huan. Effect of B4C Content on Mechanical Properties and Oxidation Resistance of (Ti0.25Zr0.25Hf0.25Ta0.25)B2-B4C Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 697-706. |
[8] | SU Yi, SHI Yangfan, JIA Chenglan, CHI Pengtao, GAO Yang, MA Qingsong, CHEN Sian. Microstructure and Properties of C/HfC-SiC Composites Prepared by Slurry Impregnation Assisted Precursor Infiltration Pyrolysis [J]. Journal of Inorganic Materials, 2024, 39(6): 726-732. |
[9] | ZHANG Rui, ZHANG Kan, YUAN Mengya, GU Xinlei, ZHENG Weitao. Nitrogen Vacancy Regulated Lattice Distortion on Improvement of (NbMoTaW)Nx Thin Films: Mechanical Properties and Wear Resistance [J]. Journal of Inorganic Materials, 2024, 39(6): 715-725. |
[10] | WANG Weihua, ZHANG Leining, DING Feng, DAI Bing, HAN Jiecai, ZHU Jiaqi, JIA Yi, Yang Yu. Heteroepitaxial Diamond Nucleation and Growth on Iridium: First-principle Calculation [J]. Journal of Inorganic Materials, 2024, 39(4): 416-422. |
[11] | LI Lei, CHENG Qunfeng. Recent Advances in the High Performance MXenes Nanocomposites [J]. Journal of Inorganic Materials, 2024, 39(2): 153-161. |
[12] | LIU Yanyan, XIE Xi, LIU Zengqian, ZHANG Zhefeng. Metal Matrix Composites Reinforced by MAX Phase Ceramics: Fabrication, Properties and Bioinspired Designs [J]. Journal of Inorganic Materials, 2024, 39(2): 145-152. |
[13] | WANG Bo, CAI Delong, ZHU Qishuai, LI Daxin, YANG Zhihua, DUAN Xiaoming, LI Yanan, WANG Xuan, JIA Dechang, ZHOU Yu. Mechanical Properties and Thermal Shock Resistance of SrAl2Si2O8 Reinforced BN Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(10): 1182-1188. |
[14] | ZHOU Yunkai, DIAO Yaqi, WANG Minglei, ZHANG Yanhui, WANG Limin. First-principles Calculation Study of the Oxidation Resistance of PANI Modified Ti3C2(OH)2 [J]. Journal of Inorganic Materials, 2024, 39(10): 1151-1158. |
[15] | YANG Pingjun, LI Tiehu, LI Hao, DANG Alei. Effect of Graphene on Graphitization, Electrical and Mechanical Properties of Epoxy Resin Carbon Foam [J]. Journal of Inorganic Materials, 2024, 39(1): 107-112. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||