Journal of Inorganic Materials ›› 2025, Vol. 40 ›› Issue (5): 511-520.DOI: 10.15541/jim20240477
• RESEARCH ARTICLE • Previous Articles Next Articles
CUI Ning1(), ZHANG Yuxin1,3, WANG Lujie2,3,4(
), LI Tongyang2,3,4, YU Yuan2, TANG Huaguo2,3, QIAO Zhuhui2,3,4(
)
Received:
2024-11-12
Revised:
2024-12-22
Published:
2025-05-20
Online:
2025-01-09
Contact:
WANG Lujie, associate professor. E-mail: ljwang@licp.cas.cn;About author:
CUI Ning (1987-), male, associate professor. E-mail: cuining@qut.edu.cn
Supported by:
CLC Number:
CUI Ning, ZHANG Yuxin, WANG Lujie, LI Tongyang, YU Yuan, TANG Huaguo, QIAO Zhuhui. Single-phase Formation Process and Carbon Vacancy Regulation of (TiVNbMoW)Cx High-entropy Ceramics[J]. Journal of Inorganic Materials, 2025, 40(5): 511-520.
Raw powder | Average particle size/µm | Purity/% | Crystal structure | Lattice constant/Å |
---|---|---|---|---|
TiC | 1 | 99.9 | fcc | 4.33 |
VC | 1 | 99.9 | fcc | 4.18 |
NbC | 1 | 99.9 | fcc | 4.47 |
Mo2C | 1 | 99.9 | hcp | a=3.01, c=4.74 |
WC | 1 | 99.9 | hcp | a=2.91, c=2.83 |
W | 1 | 99.9 | bcc | a=3.165 |
Graphite | 0.05 | 99.9 |
Table 1 Basic parameters of raw material powders
Raw powder | Average particle size/µm | Purity/% | Crystal structure | Lattice constant/Å |
---|---|---|---|---|
TiC | 1 | 99.9 | fcc | 4.33 |
VC | 1 | 99.9 | fcc | 4.18 |
NbC | 1 | 99.9 | fcc | 4.47 |
Mo2C | 1 | 99.9 | hcp | a=3.01, c=4.74 |
WC | 1 | 99.9 | hcp | a=2.91, c=2.83 |
W | 1 | 99.9 | bcc | a=3.165 |
Graphite | 0.05 | 99.9 |
C/TM | Mass fraction/% | ||||||
---|---|---|---|---|---|---|---|
TiC | VC | NbC | Mo2C | WC | W | Graphite | |
1.0 | 11.26 | 11.84 | 19.74 | 19.18 | 36.85 | 0 | 1.13 |
0.9 | 11.39 | 11.98 | 19.96 | 19.40 | 37.27 | 0 | 0 |
0.8 | 11.53 | 12.12 | 20.19 | 19.62 | 18.85 | 17.69 | 0 |
0.7 | 11.66 | 12.26 | 20.43 | 19.85 | 0 | 35.80 | 0 |
Table 2 Raw material composition of samples with different C/TM
C/TM | Mass fraction/% | ||||||
---|---|---|---|---|---|---|---|
TiC | VC | NbC | Mo2C | WC | W | Graphite | |
1.0 | 11.26 | 11.84 | 19.74 | 19.18 | 36.85 | 0 | 1.13 |
0.9 | 11.39 | 11.98 | 19.96 | 19.40 | 37.27 | 0 | 0 |
0.8 | 11.53 | 12.12 | 20.19 | 19.62 | 18.85 | 17.69 | 0 |
0.7 | 11.66 | 12.26 | 20.43 | 19.85 | 0 | 35.80 | 0 |
Fig. 4 SE-SEM images and EDS analyses of samples with C/TM of 0.9 sintered at different temperatures (a) 1500 ℃; (b) 1600 ℃; (c) 1700 ℃; (d) 1800 ℃; (e) EDS analyses of spots in Fig. (a-d). Colorful figures are available on website
Fig. 5 BE-SEM images and EDS analyses of different C/TM samples sintered at 1800 ℃ (a) C/TM=1.0; (b) C/TM=0.9; (c) C/TM=0.8; (d) C/TM=0.7; (e) EDS analyses of spots in Fig. (d). Colorful figures are available on website
Fig. 8 EBSD mappings and corresponding grain size distributions of different C/TM samples sintered at 1800 ℃ (a) C/TM=1.0; (b) C/TM=0.9; (c) C/TM=0.8; (d) C/TM=0.7
Sample | Hardness/GPa | Elastic modulus/GPa | Fracture toughness/(MPa·m1/2) |
---|---|---|---|
1800-1.0 | 20.60±1.42 | 421.34±7.88 | 3.32±0.09 |
1800-0.9 | 26.98±1.51 | 452.86±9.33 | 2.87±0.10 |
1800-0.8 | 30.64±0.93 | 502.37±8.85 | 3.94±0.09 |
1800-0.7 | 28.01±1.10 | 490.53±5.79 | 3.00±0.10 |
Table 3 Hardness, elastic modulus and fracture toughness of different C/TM samples sintered at 1800 ℃
Sample | Hardness/GPa | Elastic modulus/GPa | Fracture toughness/(MPa·m1/2) |
---|---|---|---|
1800-1.0 | 20.60±1.42 | 421.34±7.88 | 3.32±0.09 |
1800-0.9 | 26.98±1.51 | 452.86±9.33 | 2.87±0.10 |
1800-0.8 | 30.64±0.93 | 502.37±8.85 | 3.94±0.09 |
1800-0.7 | 28.01±1.10 | 490.53±5.79 | 3.00±0.10 |
[1] | LIU S Y, ZHANG S, LIU S, et al. Phase stability, mechanical properties and melting points of high-entropy quaternary metal carbides from first-principles. Journal of the European Ceramic Society, 2021, 41(13): 6267. |
[2] | CHEN H, WU Z, LIU M, et al. Synthesis, microstructure and mechanical properties of high-entropy (VNbTaMoW)C5 ceramics. Journal of the European Ceramic Society, 2021, 41(15): 7498. |
[3] | CHENG Z, LU W, CHEN L, et al. Compressive creep properties and mechanisms of (Ti-Zr-Nb-Ta-Mo)C high entropy ceramics at high temperatures. Journal of the European Ceramic Society, 2022, 42(13): 5280. |
[4] | CHEN H, XIANG H, DAI F Z, et al. Low thermal conductivity and high porosity ZrC and HfC ceramics prepared by in-situ reduction reaction/partial sintering method for ultrahigh temperature applications. Journal of Materials Science & Technology, 2019, 35(12): 2778. |
[5] | ZHOU J, ZHANG J, ZHANG F, et al. High-entropy carbide: a novel class of multicomponent ceramics. Ceramics International, 2018, 44(17):22014. |
[6] | ZHOU Y, ZHAO B, CHEN H, et al. Electromagnetic wave absorbing properties of TMCs (TM=Ti, Zr, Hf, Nb and Ta) and high entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C. Journal of Materials Science & Technology, 2021, 74: 105. |
[7] | 陈克丕, 李泽民, 马金旭, 等. 高熵陶瓷材料研究进展与展望. 陶瓷学报, 2020, 41(2): 157. |
[8] | WEI X F, LIU J X, LI F, et al. High entropy carbide ceramics from different starting materials. Journal of the European Ceramic Society, 2019, 39(10): 2989. |
[9] | YU D, YIN J, ZHANG B, et al. Pressureless sintering and properties of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics: the effect of pyrolytic carbon. Journal of the European Ceramic Society, 2021, 41(6): 3823. |
[10] | ISTOMIN P, ISTOMINA E, NADUTKIN A, et al. Preparation of (Ti,Zr,Hf,Nb,Ta)C high-entropy carbide ceramics through carbosilicothermic reduction of oxides. Journal of the European Ceramic Society, 2021, 41(14): 6934. |
[11] | HAI W, WU Z, ZHANG S, et al. Microstructure, mechanical and tribological properties of high-entropy (TaTiVW)C4 ceramics. International Journal of Refractory Metals and Hard Materials, 2023, 112: 106114. |
[12] | CAI F Y, NI D W, DONG S M. Research progress of high-entropy carbide ultra-high temperature ceramics. Journal of Inorganic Materials, 2024, 39(6): 591. |
[13] | LI J, FAN H, ZHANG Q, et al. Carbon vacancies enhanced oxidation resistance of high-entropy carbides (Ti0.2V0.2Nb0.2Mo0.2W0.2)Cx. Ceramics International, 2024, 50(6): 9926. |
[14] | LI J, ZHOU Y, SU Y, et al. Synthesis and mechanical and elevated temperature tribological properties of a novel high-entropy (TiVNbMoW)C4.375 with carbon stoichiometry deviation. Journal of Advanced Ceramics, 2023, 12(2): 242. |
[15] | LEYLAND A, MATTHEWS A. On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour. Wear, 2000, 246(1/2): 1. |
[16] | LUO S C, GUO W M, FANG Z L, et al. Effect of carbon content on the microstructure and mechanical properties of high-entropy (Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)Cx ceramics. Journal of the European Ceramic Society, 2022, 42(2): 336. |
[17] | CHEN J, ZHU Y, CHAI J, et al. Microstructure, mechanical, and thermal properties of (MoTaTiVW)Cx high entropy ceramics with different carbon stoichiometries. Ceramics International, 2024, 50(16): 28168. |
[18] | MAO H R, DONG E T, JIN S B, et al. Ultrafast high-temperature synthesis and densification of high-entropy carbides. Journal of the European Ceramic Society, 2022, 42(10): 40535. |
[19] | ANSTIS G R, CHANTIKUL P, LAWN B R, et al. A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements. Journal of the American Ceramic Society, 1981, 64(9): 533. |
[20] | WANG K, CHEN L, XU C, et al. Microstructure and mechanical properties of (TiZrNbTaMo)C high-entropy ceramic. Journal of Materials Science & Technology, 2020, 39: 99. |
[21] | TSAI M H, YEH J W. High-entropy alloys: a critical review. Materials Research Letters, 2014, 2(3): 107. |
[22] | SARKER P, HARRINGTON T, TOHER C, et al. High-entropy high-hardness metal carbides discovered by entropy descriptors. Nature Communications, 2018, 9: 4980. |
[23] | LI T X, MIAO J W, GUO E Y, et al. Tungsten-containing high-entropy alloys: a focused review of manufacturing routes, phase selection, mechanical properties, and irradiation resistance properties. Tungsten, 2021, 3(2): 181. |
[24] | LI R, LUO R Y, LIN N, et al. A novel strategy for fabricating (Ti,Ta,Nb,Zr,W)(C,N) high-entropy ceramic reinforced with in situ synthesized W2C particles. Ceramics International, 2022, 48(21): 32540. |
[25] | SONG J, CHEN G, XIANG H, et al. Regulating the formation ability and mechanical properties of high-entropy transition metal carbides by carbon stoichiometry. Journal of Materials Science & Technology, 2022, 121: 181. |
[26] | LI L, LAN H, TANG S, et al. First-principles study of hydrogen trapping and diffusion mechanisms in vanadium carbide with connecting carbon vacancies. International Journal of Hydrogen Energy, 2024, 91: 611. |
[27] | LI J, ZHANG Q, CHEN S, et al. Carbon-deficient high-entropy (Zr0.17Nb0.2Ta0.2Mo0.2W0.2)C0.89: a potential high temperature and vacuum wear-resistant material. Materials & Design, 2023, 226: 111680. |
[1] | SUN Yuxuan, WANG Zheng, SHI Xue, SHI Ying, DU Wentong, MAN Zhenyong, ZHENG Liaoying, LI Guorong. Defect Dipole Thermal-stability to the Electro-mechanical Properties of Fe Doped PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(5): 545-551. |
[2] | CHEN Yi, QIU Haipeng, CHEN Mingwei, XU Hao, CUI Heng. SiC/SiC Composite: Matrix Boron Modification and Mechanical Properties [J]. Journal of Inorganic Materials, 2025, 40(5): 504-510. |
[3] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[4] | LI Ziwei, GONG Weilu, CUI Haifeng, YE Li, HAN Weijian, ZHAO Tong. (Zr, Hf, Nb, Ta, W)C-SiC Composite Ceramics: Preparation via Precursor Route and Properties [J]. Journal of Inorganic Materials, 2025, 40(3): 271-280. |
[5] | GAO Chenguang, SUN Xiaoliang, CHEN Jun, LI Daxin, CHEN Qingqing, JIA Dechang, ZHOU Yu. SiBCN-rGO Ceramic Fibers Based on Wet Spinning Technology: Microstructure, Mechanical and Microwave-absorbing Properties [J]. Journal of Inorganic Materials, 2025, 40(3): 290-296. |
[6] | MU Haojie, ZHANG Yuanjiang, YU Bin, FU Xiumei, ZHOU Shibin, LI Xiaodong. Preparation and Properties of ZrO2 Doped Y2O3-MgO Nanocomposite Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 281-289. |
[7] | WANG Yueyue, HUANG Jiahui, KONG Hongxing, LI Huaizhu, YAO Xiaohong. Silver Loaded Radial Mesoporous Silica: Preparation and Application in Dental Resins [J]. Journal of Inorganic Materials, 2025, 40(1): 77-83. |
[8] | FAN Wugang, CAO Xiong, ZHOU Xiang, LI Ling, ZHAO Guannan, ZHANG Zhaoquan. Anticorrosion Performance of 8YSZ Ceramics in Simulated Aqueous Environment of Pressurized Water Reactor [J]. Journal of Inorganic Materials, 2024, 39(7): 803-809. |
[9] | WU Yuhao, PENG Renci, CHENG Chunyu, YANG Li, ZHOU Yichun. First-principles Study on Mechanical Properties and Melting Curve of HfxTa1-xC System [J]. Journal of Inorganic Materials, 2024, 39(7): 761-768. |
[10] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[11] | SUN Haiyang, JI Wei, WANG Weimin, FU Zhengyi. Design, Fabrication and Properties of Periodic Ordered Structural Composites with TiB-Ti Units [J]. Journal of Inorganic Materials, 2024, 39(6): 662-670. |
[12] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[13] | LIU Guoang, WANG Hailong, FANG Cheng, HUANG Feilong, YANG Huan. Effect of B4C Content on Mechanical Properties and Oxidation Resistance of (Ti0.25Zr0.25Hf0.25Ta0.25)B2-B4C Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 697-706. |
[14] | SU Yi, SHI Yangfan, JIA Chenglan, CHI Pengtao, GAO Yang, MA Qingsong, CHEN Sian. Microstructure and Properties of C/HfC-SiC Composites Prepared by Slurry Impregnation Assisted Precursor Infiltration Pyrolysis [J]. Journal of Inorganic Materials, 2024, 39(6): 726-732. |
[15] | ZHANG Rui, ZHANG Kan, YUAN Mengya, GU Xinlei, ZHENG Weitao. Nitrogen Vacancy Regulated Lattice Distortion on Improvement of (NbMoTaW)Nx Thin Films: Mechanical Properties and Wear Resistance [J]. Journal of Inorganic Materials, 2024, 39(6): 715-725. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||