Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (6): 697-706.DOI: 10.15541/jim20230544
Special Issue: 【结构材料】高熵陶瓷(202409); 【结构材料】陶瓷基复合材料(202409)
• RESEARCH ARTICLE • Previous Articles Next Articles
LIU Guoang(), WANG Hailong(
), FANG Cheng(
), HUANG Feilong, YANG Huan
Received:
2023-11-28
Revised:
2024-01-27
Published:
2024-06-20
Online:
2024-01-31
Contact:
WANG Hailong, professor. E-mail: 119whl@zzu.edu.cn;About author:
LIU Guoang (2000-), male, Master candidate. E-mail: liuguoang2022@163.com
Supported by:
CLC Number:
LIU Guoang, WANG Hailong, FANG Cheng, HUANG Feilong, YANG Huan. Effect of B4C Content on Mechanical Properties and Oxidation Resistance of (Ti0.25Zr0.25Hf0.25Ta0.25)B2-B4C Ceramics[J]. Journal of Inorganic Materials, 2024, 39(6): 697-706.
Crystalline | HBC-0 | HBC-1 | HBC-2 | HBC-3 | |
---|---|---|---|---|---|
FWHM (2θ)/(°) | (101) | 0.187±0.002 | 0.186±0.002 | 0.194±0.002 | 0.199±0.002 |
(100) | 0.119±0.001 | 0.118±0.002 | 0.131±0.002 | 0.126±0.002 | |
(001) | 0.153±0.002 | 0.151±0.003 | 0.163±0.004 | 0.184±0.003 | |
Crystallinity/% | (101) | 68.51±0.55 | 70.30±0.80 | 70.75±0.85 | 68.93±0.81 |
(100) | 81.77±0.85 | 81.85±1.26 | 82.78±1.31 | 81.92±1.14 | |
(001) | 88.85±1.04 | 89.39±1.67 | 89.34±1.86 | 90.85±1.61 |
Table 1 FWHM and crystallinity of the corresponding diffraction peaks of different ceramic samples
Crystalline | HBC-0 | HBC-1 | HBC-2 | HBC-3 | |
---|---|---|---|---|---|
FWHM (2θ)/(°) | (101) | 0.187±0.002 | 0.186±0.002 | 0.194±0.002 | 0.199±0.002 |
(100) | 0.119±0.001 | 0.118±0.002 | 0.131±0.002 | 0.126±0.002 | |
(001) | 0.153±0.002 | 0.151±0.003 | 0.163±0.004 | 0.184±0.003 | |
Crystallinity/% | (101) | 68.51±0.55 | 70.30±0.80 | 70.75±0.85 | 68.93±0.81 |
(100) | 81.77±0.85 | 81.85±1.26 | 82.78±1.31 | 81.92±1.14 | |
(001) | 88.85±1.04 | 89.39±1.67 | 89.34±1.86 | 90.85±1.61 |
Sample | Theoretical density/(g·cm-3) | Bulk density/(g·cm-3) | Relative density/% | Porosity/% |
---|---|---|---|---|
HBC-0 | 8.59 | 8.07 | 94.0 | 6.0 |
HBC-1 | 8.03 | 7.66 | 95.4 | 4.6 |
HBC-2 | 7.78 | 7.50 | 96.4 | 3.6 |
HBC-3 | 7.54 | 7.40 | 98.1 | 1.9 |
Table 2 Relative density and porosity of different ceramic samples
Sample | Theoretical density/(g·cm-3) | Bulk density/(g·cm-3) | Relative density/% | Porosity/% |
---|---|---|---|---|
HBC-0 | 8.59 | 8.07 | 94.0 | 6.0 |
HBC-1 | 8.03 | 7.66 | 95.4 | 4.6 |
HBC-2 | 7.78 | 7.50 | 96.4 | 3.6 |
HBC-3 | 7.54 | 7.40 | 98.1 | 1.9 |
Sample | Flexural strength/MPa | Fracture toughness/(MPa·m1/2) | Vickers hardness/GPa |
---|---|---|---|
HBC-0 | 409.0±37.4 | 3.22±0.13 | 21.5±0.5 |
HBC-1 | 273.0±11.2 | 4.85±0.16 | 22.2±0.3 |
HBC-2 | 570.0±27.6 | 5.58±0.36 | 24.6±1.1 |
HBC-3 | 418.0±8.3 | 5.14±0.45 | 23.3±0.8 |
Table 3 Flexural strength, fracture toughness and hardness of different ceramic samples
Sample | Flexural strength/MPa | Fracture toughness/(MPa·m1/2) | Vickers hardness/GPa |
---|---|---|---|
HBC-0 | 409.0±37.4 | 3.22±0.13 | 21.5±0.5 |
HBC-1 | 273.0±11.2 | 4.85±0.16 | 22.2±0.3 |
HBC-2 | 570.0±27.6 | 5.58±0.36 | 24.6±1.1 |
HBC-3 | 418.0±8.3 | 5.14±0.45 | 23.3±0.8 |
[1] | FENG L, FAHRENHOLTZ W G, HILMAS G E, et al. Processing of dense high-entropy boride ceramics. Journal of the European Ceramic Society, 2020, 40(12):3815. |
[2] | MAYRHOFER P H, KIRNBAUER K, ERTELTHALER P, et al. High-entropy ceramic thin films; A case study on transition metal diborides. Scripta Materialia, 2018, 149: 93. |
[3] | XIANG H M, XING Y, DAI F Z, et al. High-entropy ceramics: present status, challenges, and a look forward. Journal of Advanced Ceramics, 2021, 10(3):385. |
[4] | ZHAO P B, ZHU J B, LI M L, et al. Theoretical and experimental investigations on the phase stability and fabrication of high-entropy monoborides. Journal of European Ceramic Society, 2023, 43(6):2320. |
[5] | ZHANG W M, DAI F Z, XIANG H M, et al. Enabling highly efficient and broadband electromagnetic wave absorption by tuning impedance match in high-entropy transition metal diborides (HE TMB2). Journal of Advanced Ceramics, 2021, 10(6):1299. |
[6] | BACKMAN L, GILD J, LUO J, et al. Part I: theoretical predictions of preferential oxidation in refractory high entropy materials. Acta Materialia, 2020, 197: 20. |
[7] | FENG L, FAHRENHOLTZ W G, BRENNER D W, et al. High- entropy ultra-high-temperature borides and carbides: a new class of materials for extreme environments. Annual Review of Materials Research, 2021, 51(1):165. |
[8] | STORR B, MOORE L, CHAKRABARTY K, et al. Properties of high entropy borides synthesized via microwave-induced plasma. APL Materials, 2022, 10(6):061109. |
[9] | ZHAO P B, ZHU J B, YANG K J, et al. Outstanding wear resistance of plasma sprayed high-entropy monoboride composite coating by inducing phase structural cooperative mechanism. Applied Surface Science, 2023, 616: 156516. |
[10] | GILD J, ZHANG Y, HARRINGTON T, et al. High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics. Scientific Reports, 2016, 6: 37946. |
[11] | QIAO L J, LIU Y, GAO Y, et al. First-principles prediction, fabrication and characterization of (Hf0.2Nb0.2Ta0.2Ti0.2Zr0.2)B2 high- entropy borides. Ceramics International, 2022, 48(12):17234. |
[12] | TALLARITA G, LICHERI R, GARRONI S, et al. High-entropy transition metal diborides by reactive and non-reactive spark plasma sintering: a comparative investigation. Journal of the European Ceramic Society, 2019, 40(4):842. |
[13] | WUCHINA E, OPILA E, OPEKA M, et al. UHTCs: ultra-high temperature ceramic materials for extreme environment applications. The Electrochemical Society Interface, 2007, 16(4):30. |
[14] | FAHRENHOLTZ W G, HILMAS G E, TALMY I, et al. Refractory diborides of zirconium and hafnium. Journal of the American Ceramic Society, 2007, 90(5):1347. |
[15] |
FENG L, FAHRENHOLTZ W G, HILMAS G E, et al. Two-step synthesis process for high-entropy diboride powders. Journal of the American Ceramic Society, 2020, 103(2):724.
DOI |
[16] | ZHANG Y, GUO W M, JIANG Z B, et al. Dense high-entropy boride ceramics with ultra-high hardness. Scripta Materialia, 2019, 164: 135. |
[17] | ZHANG Y, JIANG Z B, SUN S K, et al. Microstructure and mechanical properties of high-entropy borides derived from boro/ carbothermal reduction. Journal of European Ceramic Society, 2021, 39(13):3920. |
[18] | MA H B, LIU H L, ZHAO J, et al. Pressureless sintering, mechanical properties and oxidation behavior of ZrB2 ceramics doped with B4C. Journal of European Ceramic Society, 2015, 35(10):2699. |
[19] | MEUMAN E W, HILMAS G E, FAHRENHOLTZ W G. Processing, microstructure, and mechanical properties of zirconium diboride- boron carbide ceramics. Ceramics International, 2017, 43(9):6942. |
[20] | ZHAO J, LI Q G, CAO W X, et al. Influences of B4C content and particle size on the mechanical properties of hot pressed TiB2-B4C composites. Journal of Asian Ceramic Societies, 2021, 9(3):1239. |
[21] | HAO J J, LI J Y, ZOU B L, et al. Effect of phase composition on the oxidation resistance of ZrB2-SiC coatings. Journal of European Ceramic Society, 2022, 42(5): 2097. |
[22] | MA M D, YE B L, HAN Y J, et al. High-pressure sintering of ultrafine-grained high-entropy diboride ceramics. Journal of the American Ceramic Society, 2020, 103(12):6655. |
[23] | MONTEVERDE F, SARAGA F, GABOARDI M. Compositional disorder and sintering of entropy stabilized (Hf, Nb, Ta, Ti, Zr)B2 solid solution powders. Journal of the American Ceramic Society, 2020, 40(12):3807. |
[24] | MOSHTAGHIOUN B M, GOMEA-ARCIA D, DOMING- RODRIGUEZ A, et al. Grain size dependence of hardness and fracture toughness in pure near fully-dense boron carbide ceramics. Journal of European Ceramic Society, 2016, 36(7): 1829. |
[25] | ZHANG Y, SUN S K, GUO W M, et al. Optimal preparation of high-entropy boride-silicon carbide ceramics. Journal of Advanced Ceramics, 2021, 10(1):173. |
[26] | LIU J X, SHEN X Q, WU Y, et al. Mechanical properties of hot-pressed high-entropy diboride-based ceramics. Journal of Advanced Ceramics, 2020, 9(4):503. |
[27] | SONG Q, ZHANG Z H, HU Z Y, et al. Influences of the pre-oxidation time on the microstructure and flexural strength of monolithic B4C ceramic and TiB2-SiC/B4C composite ceramic. Journal of Alloys and Compounds, 2020, 831: 154852. |
[28] | FAHRENHOLTZ W G. Thermodynamic analysis of ZrB2-SiC oxidation: formation of a SiC-depleted region. Journal of the American Ceramic Society, 2007, 90(1):143. |
[29] | YE B L, WEN T Q, CHU Y H. High-emperature oxidation behavior of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics in air. Journal of the American Ceramic Society, 2020, 103(1):500. |
[30] | ZENG L Y, LIU Q Y, SUN S K. Microstructure evolution of MeB2 (Me=Zr, Ti) powders prepared by borothermal reduction during heat treatment at 1000 ℃-1800 ℃. Ceramics International, 2020, 45(17):23794. |
[1] | FAN Wugang, CAO Xiong, ZHOU Xiang, LI Ling, ZHAO Guannan, ZHANG Zhaoquan. Anticorrosion Performance of 8YSZ Ceramics in Simulated Aqueous Environment of Pressurized Water Reactor [J]. Journal of Inorganic Materials, 2024, 39(7): 803-809. |
[2] | WU Yuhao, PENG Renci, CHENG Chunyu, YANG Li, ZHOU Yichun. First-principles Study on Mechanical Properties and Melting Curve of HfxTa1-xC System [J]. Journal of Inorganic Materials, 2024, 39(7): 761-768. |
[3] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[4] | SUN Haiyang, JI Wei, WANG Weimin, FU Zhengyi. Design, Fabrication and Properties of Periodic Ordered Structural Composites with TiB-Ti Units [J]. Journal of Inorganic Materials, 2024, 39(6): 662-670. |
[5] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[6] | SU Yi, SHI Yangfan, JIA Chenglan, CHI Pengtao, GAO Yang, MA Qingsong, CHEN Sian. Microstructure and Properties of C/HfC-SiC Composites Prepared by Slurry Impregnation Assisted Precursor Infiltration Pyrolysis [J]. Journal of Inorganic Materials, 2024, 39(6): 726-732. |
[7] | ZHANG Rui, ZHANG Kan, YUAN Mengya, GU Xinlei, ZHENG Weitao. Nitrogen Vacancy Regulated Lattice Distortion on Improvement of (NbMoTaW)Nx Thin Films: Mechanical Properties and Wear Resistance [J]. Journal of Inorganic Materials, 2024, 39(6): 715-725. |
[8] | ZHENG Bin, KANG Kai, ZHANG Qing, YE Fang, XIE Jing, JIA Yan, SUN Guodong, CHENG Laifei. Preparation and Thermal Stability of Ti3SiC2 Ceramics by Polymer Derived Ceramics Method [J]. Journal of Inorganic Materials, 2024, 39(6): 733-740. |
[9] | ZHANG Yuchen, LU Zhiyao, HE Xiaodong, SONG Guangping, ZHU Chuncheng, ZHENG Yongting, BAI Yuelei. Predictions of Phase Stability and Properties of S-group Elements Containing MAX Borides [J]. Journal of Inorganic Materials, 2024, 39(2): 225-232. |
[10] | LI Lei, CHENG Qunfeng. Recent Advances in the High Performance MXenes Nanocomposites [J]. Journal of Inorganic Materials, 2024, 39(2): 153-161. |
[11] | LIU Yanyan, XIE Xi, LIU Zengqian, ZHANG Zhefeng. Metal Matrix Composites Reinforced by MAX Phase Ceramics: Fabrication, Properties and Bioinspired Designs [J]. Journal of Inorganic Materials, 2024, 39(2): 145-152. |
[12] | WANG Bo, CAI Delong, ZHU Qishuai, LI Daxin, YANG Zhihua, DUAN Xiaoming, LI Yanan, WANG Xuan, JIA Dechang, ZHOU Yu. Mechanical Properties and Thermal Shock Resistance of SrAl2Si2O8 Reinforced BN Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(10): 1182-1188. |
[13] | ZHOU Yunkai, DIAO Yaqi, WANG Minglei, ZHANG Yanhui, WANG Limin. First-principles Calculation Study of the Oxidation Resistance of PANI Modified Ti3C2(OH)2 [J]. Journal of Inorganic Materials, 2024, 39(10): 1151-1158. |
[14] | YANG Pingjun, LI Tiehu, LI Hao, DANG Alei. Effect of Graphene on Graphitization, Electrical and Mechanical Properties of Epoxy Resin Carbon Foam [J]. Journal of Inorganic Materials, 2024, 39(1): 107-112. |
[15] | NI Xiaoshi, LIN Ziyang, QIN Muyan, YE Song, WANG Deping. Bioactivity and Mechanical Property of PMMA Bone Cement: Effect of Silanized Mesoporous Borosilicate Bioglass Microspheres [J]. Journal of Inorganic Materials, 2023, 38(8): 971-977. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||