Journal of Inorganic Materials ›› 2025, Vol. 40 ›› Issue (1): 77-83.DOI: 10.15541/jim20240305
• RESEARCH ARTICLE • Previous Articles Next Articles
WANG Yueyue(), HUANG Jiahui, KONG Hongxing, LI Huaizhu, YAO Xiaohong
Received:
2024-06-21
Revised:
2024-07-25
Published:
2025-01-20
Online:
2024-07-26
About author:
WANG Yueyue (1988-), lecturer. E-mail: wangyueyue@tyut.edu.cn
Supported by:
CLC Number:
WANG Yueyue, HUANG Jiahui, KONG Hongxing, LI Huaizhu, YAO Xiaohong. Silver Loaded Radial Mesoporous Silica: Preparation and Application in Dental Resins[J]. Journal of Inorganic Materials, 2025, 40(1): 77-83.
Element | O | Si | Ag | Total |
---|---|---|---|---|
Mass fraction/% | 60.44 | 37.59 | 1.97 | 100 |
Table 1 Chemical composition of Ag-RMS
Element | O | Si | Ag | Total |
---|---|---|---|---|
Mass fraction/% | 60.44 | 37.59 | 1.97 | 100 |
Sample | Average size/nm | Specific surface area/(m2·g-1) | Cumulative pore volume/(cm3·g-1) | Average pore diameter/nm |
---|---|---|---|---|
Ag-RMS | 421±181 | 348.15 | 0.43 | 5.15 |
Table 2 Particle size, specific surface area, pore volume and pore size of Ag-RMS
Sample | Average size/nm | Specific surface area/(m2·g-1) | Cumulative pore volume/(cm3·g-1) | Average pore diameter/nm |
---|---|---|---|---|
Ag-RMS | 421±181 | 348.15 | 0.43 | 5.15 |
Fig. 5 Effect of different contents of Ag-RMS on the mechanical properties of dental composite resins (a) Flexural strength; (b) Flexural modulus; (c) Compressive strength; (d) Vickers microhardness. *: p<0.05, **: p<0.01
Fig. 6 Effect of different mass ratios of Ag-RMS and solid silica on the mechanical properties of dental composite resins (a) Flexural strength; (b) Flexural modulus; (c) Compressive strength; (d) Vickers microhardness. *: p < 0.05, **: p < 0.01, ***: p < 0.001
Fig. 7 Polymerization shrinkage (a), degree of conversion (b), curing depth (c), and contact angle (d) of dental composite resins with different inorganic fillers (*: p < 0.05)
[1] |
BALHADDAD A A, KANSARA A A, HIDAN D, et al. Toward dental caries: exploring nanoparticle-based platforms and calcium phosphate compounds for dental restorative materials. Bioactive Materials, 2019, 4: 43.
DOI PMID |
[2] | AMINOROAYA A, NEISIANY R E, KHORASANI S N, et al. A review of dental composites: challenges, chemistry aspects, filler influences, and future insights. Composites Part B: Engineering, 2021, 216: 108852. |
[3] | CHO K, RAJAN G, FARRAR P, et al. Dental resin composites: a review on materials to product realizations. Composites Part B-Engineering, 2022, 230: 109495. |
[4] | CHEN H Y, WANG R L, QIAN L, et al. Dental restorative resin composites: modification technologies for the matrix/filler interface. Macromolecular Materials and Engineering, 2018, 303(10): 1800264. |
[5] |
LEZAJA M, VELJOVIC D N, JOKIC B M, et al. Effect of hydroxyapatite spheres, whiskers, and nanoparticles on mechanical properties of a model BisGMA/TEGDMA composite initially and after storage. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2013, 101(8): 1469.
DOI PMID |
[6] | WANG X Y, CAI Q, ZHANG X H, et al. Improved performance of bis-GMA/TEGDMA dental composites by net-like structures formed from SiO2 nanofiber fillers. Materials Science and Engineering: C, 2016, 59: 464. |
[7] | CHEN H Y, WANG R L, QIAN L, et al. Surface modification of urchin-like serried hydroxyapatite with Sol-Gel method and its application in dental composites. Composites Part B-Engineering, 2020, 182: 107621. |
[8] | CHEN H Y, WEI S Q, WANG R L, et al. Improving the physical- mechanical property of dental composites by grafting methacrylate- polyhedral oligomeric silsesquioxane onto a filler surface. ACS Biomaterials Science & Engineering, 2021, 7(4): 1428. |
[9] | CHEN H Y, WANG J J, YIN S, et al. Micromechanical interlocking- inspired dendritic porous silica-based multimodal resin composites for the tooth restoration. Nano Research, 2024, 17: 9065. |
[10] |
ZHANG S N, WANG X, YANG J W, et al. Micromechanical interlocking structure at the filler/resin interface for dental composites: a review. International Journal of Oral Science, 2023, 15(1): 21.
DOI PMID |
[11] | KONG H X, BAI X X, LI H Z, et al. Preparation of Ca doped wrinkled porous silica (Ca-WPS) for the improvement of apatite formation and mechanical properties of dental resins. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 129: 105159. |
[12] |
CHEN H, LIU H, WANG R, et al. Size-controllable synthesis of dendritic porous silica as reinforcing fillers for dental composites. Dental Materials, 2021, 37(6): 961.
DOI PMID |
[13] | LIANG J, LIU F, ZOU J, et al. pH-responsive antibacterial resin adhesives for secondary caries inhibition. Journal of Dental Research, 2020, 99(12): 1368. |
[14] | CAO L Y, YAN J R, LUO T, et al. Antibacterial and fluorescent clear aligner attachment resin modified with chlorhexidine loaded mesoporous silica nanoparticles and zinc oxide quantum dots. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 141: 105817. |
[15] |
AI M, DU Z Y, ZHU S Q, et al. Composite resin reinforced with silver nanoparticles-laden hydroxyapatite nanowires for dental application. Dental Materials, 2017, 33(1): 12.
DOI PMID |
[16] | WANG Y, WU Z Y, WANG T, et al. Bioactive dental resin composites with MgO nanoparticles. ACS Biomaterials Science & Engineering, 2023, 9(8): 4632. |
[17] | LIU Y L, WANG R L, LI N, et al. Preparation of zinc oxide mesocrystal filler and its properties as dental composite resin. Journal of Inorganic Materials, 2019, 34(10): 1077. |
[18] |
BAI X X, LIN C C, WANG Y Y, et al. Preparation of Zn doped mesoporous silica nanoparticles (Zn-MSNs) for the improvement of mechanical and antibacterial properties of dental resin composites. Dental Materials, 2020, 36(6): 794.
DOI PMID |
[19] |
SIDDIQI K S, HUSEN A, RAO R A K. A review on biosynthesis of silver nanoparticles and their biocidal properties. Journal of Nanobiotechnology, 2018, 16(1): 14.
DOI PMID |
[20] | REN J M, GUO X W. The germicidal effect, biosafety and mechanical properties of antibacterial resin composite in cavity filling. Heliyon, 2023, 9(9): e19078. |
[21] | POLSHETTIWAR V, CHA D, ZHANG X X, et al. High-surface- area silica nanospheres (KCC-1) with a fibrous morphology. Angewandte Chemie International Edition, 2010, 49(50): 9846. |
[22] | BOARO L C, GONÇALVES F, GUIMARÃES T C, et al. Sorption, solubility, shrinkage and mechanical properties of “low-shrinkage” commercial resin composites. Dental Materials, 2013, 29(4): 398. |
[23] | TANTBIROJN D, PFEIFER C S, BRAGA R R, et al. Do low- shrink composites reduce polymerization shrinkage effects? Journal of Dental Research, 2011, 90(5): 596. |
[24] | WANG Y, HU K, HE J, et al. Improving the size uniformity of dendritic fibrous nano-silica by a facile one-pot rotating hydrothermal approach. RSC Advances, 2019, 9(43): 24783. |
[25] | WANG Y Y, BAI X X, LI H Z, et al. Effect of monodisperse mesoporous bioactive glass spheres (MBGs) on the mechanical properties and bioactivity of dental composites. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 142: 105820. |
[26] |
GAO A, HANG R Q, HUANG X B, et al. The effects of titania nanotubes with embedded silver oxide nanoparticles on bacteria and osteoblasts. Biomaterials, 2014, 35(13): 4223.
DOI PMID |
[27] |
WANG R L, HABIB E, ZHU X X. Synthesis of wrinkled mesoporous silica and its reinforcing effect for dental resin composites. Dental Materials, 2017, 33(10): 1139.
DOI PMID |
[28] |
SAMUEL S P, LI S X, MUKHERJEE I, et al. Mechanical properties of experimental dental composites containing a combination of mesoporous and nonporous spherical silica as fillers. Dental Materials, 2009, 25(3): 296.
DOI PMID |
[1] | FAN Wugang, CAO Xiong, ZHOU Xiang, LI Ling, ZHAO Guannan, ZHANG Zhaoquan. Anticorrosion Performance of 8YSZ Ceramics in Simulated Aqueous Environment of Pressurized Water Reactor [J]. Journal of Inorganic Materials, 2024, 39(7): 803-809. |
[2] | WU Yuhao, PENG Renci, CHENG Chunyu, YANG Li, ZHOU Yichun. First-principles Study on Mechanical Properties and Melting Curve of HfxTa1-xC System [J]. Journal of Inorganic Materials, 2024, 39(7): 761-768. |
[3] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[4] | SUN Haiyang, JI Wei, WANG Weimin, FU Zhengyi. Design, Fabrication and Properties of Periodic Ordered Structural Composites with TiB-Ti Units [J]. Journal of Inorganic Materials, 2024, 39(6): 662-670. |
[5] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[6] | LIU Guoang, WANG Hailong, FANG Cheng, HUANG Feilong, YANG Huan. Effect of B4C Content on Mechanical Properties and Oxidation Resistance of (Ti0.25Zr0.25Hf0.25Ta0.25)B2-B4C Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 697-706. |
[7] | SU Yi, SHI Yangfan, JIA Chenglan, CHI Pengtao, GAO Yang, MA Qingsong, CHEN Sian. Microstructure and Properties of C/HfC-SiC Composites Prepared by Slurry Impregnation Assisted Precursor Infiltration Pyrolysis [J]. Journal of Inorganic Materials, 2024, 39(6): 726-732. |
[8] | ZHANG Rui, ZHANG Kan, YUAN Mengya, GU Xinlei, ZHENG Weitao. Nitrogen Vacancy Regulated Lattice Distortion on Improvement of (NbMoTaW)Nx Thin Films: Mechanical Properties and Wear Resistance [J]. Journal of Inorganic Materials, 2024, 39(6): 715-725. |
[9] | ZHANG Yuchen, LU Zhiyao, HE Xiaodong, SONG Guangping, ZHU Chuncheng, ZHENG Yongting, BAI Yuelei. Predictions of Phase Stability and Properties of S-group Elements Containing MAX Borides [J]. Journal of Inorganic Materials, 2024, 39(2): 225-232. |
[10] | LI Lei, CHENG Qunfeng. Recent Advances in the High Performance MXenes Nanocomposites [J]. Journal of Inorganic Materials, 2024, 39(2): 153-161. |
[11] | LIU Yanyan, XIE Xi, LIU Zengqian, ZHANG Zhefeng. Metal Matrix Composites Reinforced by MAX Phase Ceramics: Fabrication, Properties and Bioinspired Designs [J]. Journal of Inorganic Materials, 2024, 39(2): 145-152. |
[12] | WANG Bo, CAI Delong, ZHU Qishuai, LI Daxin, YANG Zhihua, DUAN Xiaoming, LI Yanan, WANG Xuan, JIA Dechang, ZHOU Yu. Mechanical Properties and Thermal Shock Resistance of SrAl2Si2O8 Reinforced BN Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(10): 1182-1188. |
[13] | YANG Pingjun, LI Tiehu, LI Hao, DANG Alei. Effect of Graphene on Graphitization, Electrical and Mechanical Properties of Epoxy Resin Carbon Foam [J]. Journal of Inorganic Materials, 2024, 39(1): 107-112. |
[14] | NI Xiaoshi, LIN Ziyang, QIN Muyan, YE Song, WANG Deping. Bioactivity and Mechanical Property of PMMA Bone Cement: Effect of Silanized Mesoporous Borosilicate Bioglass Microspheres [J]. Journal of Inorganic Materials, 2023, 38(8): 971-977. |
[15] | XIE Jiaye, LI Liwen, ZHU Qiang. Contrastive Study on in Vitro Antibacterial Property and Biocompatibility of Three Clinical Pulp Capping Agents [J]. Journal of Inorganic Materials, 2023, 38(12): 1449-1456. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||