Journal of Inorganic Materials ›› 2025, Vol. 40 ›› Issue (11): 1245-1251.DOI: 10.15541/jim20250036
• RESEARCH ARTICLE • Previous Articles Next Articles
ZHANG Haifeng1(
), JIANG Meng1, SUN Tingting3(
), WANG Lianjun1(
), JIANG Wan1,2
Received:2025-01-25
Revised:2025-03-31
Published:2025-11-20
Online:2025-04-15
Contact:
SUN Tingting, lecturer. E-mail: tingtingsun@dhu.edu.cn;About author:ZHANG Haifeng (2000-), male, Master candidate. E-mail: zhanghf2025@163.com
Supported by:CLC Number:
ZHANG Haifeng, JIANG Meng, SUN Tingting, WANG Lianjun, JIANG Wan. Preparation of p-type GeMnTe2 Based Thermoelectric Materials with Stable Cubic Phase[J]. Journal of Inorganic Materials, 2025, 40(11): 1245-1251.
Fig. 1 Room temperature crystal structures for (a) hexagonal MnTe, (b) rhombohedral GeTe and (c) cubic GeMnTe2; (d) Powder XRD patterns of GeMn1-xTe2-2x and GeMnTe2-y at room temperature;(e) Differential scanning calorimetry and thermogravimetric heat flow curves of GeMnTe1.96
| Point | Mn/% | Ge/% | Te/% |
|---|---|---|---|
| 1 | 34.39 | 4.04 | 61.56 |
| 2 | 34.50 | / | 65.50 |
| 3 | 34.74 | 5.76 | 59.49 |
Table 1 Element contents of the points in Fig. 2(a) by EDS point scanning (in atom)
| Point | Mn/% | Ge/% | Te/% |
|---|---|---|---|
| 1 | 34.39 | 4.04 | 61.56 |
| 2 | 34.50 | / | 65.50 |
| 3 | 34.74 | 5.76 | 59.49 |
Fig. 4 Temperature dependent (a) electrical resistivity, (b) Seebeck coefficient, (c) power factor, (d) total thermal conductivity, (e) lattice and electronic thermal conductivity, and (f) zT for GeMn1-xTe2-2x and GeMnTe2-y samples
| [1] |
SHI X L, ZOU J, CHEN Z G. Advanced thermoelectric design: from materials and structures to devices. Chemical Reviews, 2020, 120(15): 7399.
DOI URL |
| [2] |
ZHUANG H L, CAI B, PAN Y, et al. Strong and efficient bismuth telluride-based thermoelectrics for Peltier microcoolers. National Science Review, 2024, 11(10): nwae329.
DOI URL |
| [3] |
ZHANG Q, YUAN M, PANG K, et al. High-performance industrial-grade p-type (Bi,Sb)2Te3 thermoelectric enabled by a stepwise optimization strategy. Advanced Materials, 2023, 35(21): 2300338.
DOI URL |
| [4] | HAO F, QIU P, TANG Y, et al. High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between 100 and 300 ℃. Energy & Environmental Science, 2016, 9(10): 3120. |
| [5] |
ZHANG Z, SUN T, WANG L, et al. Flexible thermoelectric films with different Ag2Se dimensions: performance optimization and device integration. Journal of Inorganic Materials, 2024, 39(11): 1221.
DOI URL |
| [6] |
BU Z, ZHANG X, HU Y, et al. A record thermoelectric efficiency in tellurium-free modules for low-grade waste heat recovery. Nature Communications, 2022, 13: 237.
DOI PMID |
| [7] |
JIANG M, FU Y T, ZHANG Q H, et al. High-efficiency and reliable same-parent thermoelectric modules using Mg3Sb2-based compounds. National Science Review, 2023, 10(6): nwad095.
DOI URL |
| [8] | MAO J, LIU Z, ZHOU J, et al. Advances in thermoelectrics. Advances in Physics, 2018, 67(2): 69. |
| [9] |
YAN X, PAN H, ZHANG Y, et al. Highly enhanced thermoelectric and mechanical performance of copper sulfides via natural mineral in-situ phase separation. Journal of Advanced Ceramics, 2024, 13(5): 641.
DOI URL |
| [10] | DUAN B, YANG J, SALVADOR J R, et al. Electronegative guests in CoSb3. Energy & Environmental Science, 2016, 9(6): 2090. |
| [11] | FU Y T, ZHANG Q H, HU Z L, et al. Mg3(Bi,Sb)2-based thermoelectric modules for efficient and reliable waste-heat utilization up to 750 K. Energy & Environmental Science, 2022, 15(8): 3265. |
| [12] |
WU D, XIE L, XU X, et al. High thermoelectric performance achieved in GeTe-Bi2Te3 pseudo-binary via van der Waals gap-induced hierarchical ferroelectric domain structure. Advanced Functional Materials, 2019, 29(18): 1806613.
DOI URL |
| [13] |
LI J, ZHANG X, WANG X, et al. High-performance GeTe thermoelectrics in both rhombohedral and cubic phases. Journal of the American Chemical Society, 2018, 140(47): 16190.
DOI PMID |
| [14] |
HONG M, WANG Y, LIU W, et al. Arrays of planar vacancies in superior thermoelectric Ge1-x-yCdxBiyTe with band convergence. Advanced Energy Materials, 2018, 8(30): 1801837.
DOI URL |
| [15] |
LI J, ZHANG X, CHEN Z, et al. Low-symmetry rhombohedral GeTe thermoelectrics. Joule, 2018, 2(5): 976.
DOI URL |
| [16] |
LI J, CHEN Z, ZHANG X, et al. Electronic origin of the high thermoelectric performance of GeTe among the p-type group IV monotellurides. NPG Asia Materials, 2017, 9(3): e353.
DOI |
| [17] |
LEE J K, OH M W, KIM B S, et al. Influence of Mn on crystal structure and thermoelectric properties of GeTe compounds. Electronic Materials Letters, 2014, 10(4): 813.
DOI URL |
| [18] |
LIU Z, SUN J, MAO J, et al. Phase-transition temperature suppression to achieve cubic GeTe and high thermoelectric performance by Bi and Mn codoping. Proceedings of the National Academy of Sciences, 2018, 115(21): 5332.
DOI URL |
| [19] |
CHENG J, YIN L, WANG X, et al. Realizing a superior conversion efficiency of ≈11.3% in the group IV-VI thermoelectric module. Small, 2024, 20(27): 2312145.
DOI URL |
| [20] | LI X, CHEN C, YIN L, et al. Realizing an excellent conversion efficiency of 14.5% in the Mg3Sb2/GeTe-based thermoelectric module for waste heat recovery. Energy & Environmental Science, 2023, 16(12): 6147. |
| [21] |
WANG S, J M, WANG L, et al. n-Type Pb-free AgBiSe2 based thermoelectric materials with stable cubic phase structure. Journal of Inorganic Materials, 2023, 38(7): 807.
DOI URL |
| [22] |
ZHENG Z, SU X, DENG R, et al. Rhombohedral to cubic conversion of GeTe via MnTe alloying leads to ultralow thermal conductivity, electronic band convergence, and high thermoelectric performance. Journal of the American Chemical Society, 2018, 140(7): 2673.
DOI URL |
| [23] |
LIU X, WANG W, WANG Y, et al. Realizing high thermoelectric performance in GeTe-based supersaturated solid solutions. Advanced Energy Materials, 2024, 14(16): 2304029.
DOI URL |
| [24] |
CHEN S, ZHONG Y, CAI J, et al. High thermoelectric performance of GeTe-MnTe alloy driven by spin degree of freedom. Materials Today Physics, 2024, 43: 101393.
DOI URL |
| [25] |
WU G, CAI J, CHEN L, et al. Defect engineering realizes superior thermoelectric performance of GeTe. Advanced Functional Materials, 2024, 34(46): 2407818.
DOI URL |
| [26] |
HONG M, CHEN Z G, YANG L, et al. Realizing zT of 2.3 in Ge1-x-ySbxInyTe via reducing the phase-transition temperature and introducing resonant energy doping. Advanced Materials, 2018, 30(11): 1705942.
DOI URL |
| [27] | SARKAR D, SAMANTA M, GHOSH T, et al. All-scale hierarchical nanostructures and superior valence band convergence lead to ultra-high thermoelectric performance in cubic GeTe. Energy & Environmental Science, 2022, 15(11): 4625. |
| [28] | DUAN S, YIN Y, LIU G Q, et al. Anomalous thermopower and high ZT in GeMnTe2 driven by spin’s thermodynamic entropy. Research, 2021, 2021: 1949070. |
| [29] |
MEI Q, XIE C, CUI J, et al. Locally off-centered Ge atoms contribute to high thermoelectric performance of globally averaged cubic MnGeTe2 alloys. Acta Materialia, 2025, 285: 120694.
DOI URL |
| [30] |
CHEN H, ZHAO E, WEN X, et al. Phase engineering on high- entropy transition metal dichalcogenides and the entropy-enhanced thermoelectric performance. Journal of Advanced Ceramics, 2024, 13: 1985.
DOI URL |
| [31] |
XU Y, LI W, WANG C, et al. MnTe2 as a novel promising thermoelectric material. Journal of Materiomics, 2018, 4(3): 215.
DOI URL |
| [32] |
ZHOU B, LI W, WANG X, et al. Promising cubic MnGeTe2 thermoelectrics. Science China Materials, 2019, 62(3): 379.
DOI |
| [33] |
DONG J F, PEI J, LI J F, et al. High-performance electron-doped GeMnTe2: hierarchical structure and low thermal conductivity. Journal of Materials Chemistry A, 2019, 7(48): 27361.
DOI URL |
| [34] |
DONG J, JIANG Y, SUN Y, et al. Discordant distortion in cubic GeMnTe2 and high thermoelectric properties of GeMnTe2-x%SbTe. Journal of the American Chemical Society, 2023, 145(3): 1988.
DOI URL |
| [35] |
YIN L C, LIU W D, LI M, et al. Interstitial Cu: an effective strategy for high carrier mobility and high thermoelectric performance in GeTe. Advanced Functional Materials, 2023, 33(25): 2301750.
DOI URL |
| [36] |
ZHANG Q, WANG R, SONG K, et al. Raised solubility in SnTe by GeMnTe2 alloying enables converged valence bands, low thermal conductivity, and high thermoelectric performance. Nano Energy, 2022, 94: 106940.
DOI URL |
| [37] |
ZHONG Y, CHEN S, CAI J, et al. Bipolar-like effect and its suppression in magnetic thermoelectrics GeMnTe2. ACS Applied Electronic Materials, 2024, 6(4): 2552.
DOI URL |
| [38] |
LI M, HONG M, TANG X, et al. Crystal symmetry induced structure and bonding manipulation boosting thermoelectric performance of GeTe. Nano Energy, 2020, 73: 104740
DOI URL |
| [1] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
| [2] | JIN Min, MA Yupeng, WEI Tianran, LIN Siqi, BAI Xudong, SHI Xun, LIU Xuechao. Growth and Characterization of Large-size InSe Crystal from Non-stoichiometric Solution via a Zone Melting Method [J]. Journal of Inorganic Materials, 2024, 39(5): 554-560. |
| [3] | WANG Shuling, JIANG Meng, WANG Lianjun, JIANG Wan. n-Type Pb-free AgBiSe2 Based Thermoelectric Materials with Stable Cubic Phase Structure [J]. Journal of Inorganic Materials, 2023, 38(7): 807-814. |
| [4] | CHEN Qiang, BAI Shuxin, YE Yicong. Highly Thermal Conductive Silicon Carbide Ceramics Matrix Composites for Thermal Management: a Review [J]. Journal of Inorganic Materials, 2023, 38(6): 634-646. |
| [5] | ZHANG Shuo, FU Qiangang, ZHANG Pei, FEI Jie, LI Wei. Influence of High Temperature Treatment of C/C Porous Preform on Friction and Wear Behavior of C/C-SiC Composites [J]. Journal of Inorganic Materials, 2023, 38(5): 561-568. |
| [6] | FU Shi, YANG Zengchao, LI Jiangtao. Progress of High Strength and High Thermal Conductivity Si3N4 Ceramics for Power Module Packaging [J]. Journal of Inorganic Materials, 2023, 38(10): 1117-1132. |
| [7] | SUN Xiaofan, CHEN Xiaowu, JIN Xihai, KAN Yanmei, HU Jianbao, DONG Shaoming. Fabrication and Properties of AlN-SiC Multiphase Ceramics via Low Temperature Reactive Melt Infiltration [J]. Journal of Inorganic Materials, 2023, 38(10): 1223-1229. |
| [8] | FU Shi, YANG Zengchao, LI Honghua, WANG Liang, LI Jiangtao. Mechanical Properties and Thermal Conductivity of Si3N4 Ceramics with Composite Sintering Additives [J]. Journal of Inorganic Materials, 2022, 37(9): 947-953. |
| [9] | HU Jiajun, WANG Kai, HOU Xinguang, YANG Ting, XIA Hongyan. Boron Phosphide with High Thermal Conductivity: Synthesis by Molten Salt Method and Thermal Management Performance [J]. Journal of Inorganic Materials, 2022, 37(9): 933-940. |
| [10] | WANG Pengjiang, KANG Huijun, YANG Xiong, LIU Ying, CHENG Cheng, WANG Tongmin. Inhibition of Lattice Thermal Conductivity of ZrNiSn-based Half-Heusler Thermoelectric Materials by Entropy Adjustment [J]. Journal of Inorganic Materials, 2022, 37(7): 717-723. |
| [11] | RUAN Jing, YANG Jinshan, YAN Jingyi, YOU Xiao, WANG Mengmeng, HU Jianbao, ZHANG Xiangyu, DING Yusheng, DONG Shaoming. Porous SiC Ceramic Matrix Composite Reinforced by SiC Nanowires with High Strength and Low Thermal Conductivity [J]. Journal of Inorganic Materials, 2022, 37(4): 459-466. |
| [12] | LOU Xunuo, DENG Houquan, LI Shuang, ZHANG Qingtang, XIONG Wenjie, TANG Guodong. Thermal and Electrcial Transport Properities of Ge Doped MnTe Thermoelectrics [J]. Journal of Inorganic Materials, 2022, 37(2): 209-214. |
| [13] | WANG Weide, CHEN Huanbei, LI Shishuai, YAO Dongxu, ZUO Kaihui, ZENG Yuping. Preparation of Silicon Nitride with High Thermal Conductivity and High Flexural Strength Using YbH2-MgO as Sintering Additive [J]. Journal of Inorganic Materials, 2021, 36(9): 959-966. |
| [14] | WANG Haoxuan, LIU Qiaomu, WANG Yiguang. Research Progress of High Entropy Transition Metal Carbide Ceramics [J]. Journal of Inorganic Materials, 2021, 36(4): 355-364. |
| [15] | SANG Weiwei, ZHANG Hongsong, CHEN Huahui, WEN Bin, LI Xinchun. Preparation and Thermophysical Properties of (Sm0.2Gd0.2Dy0.2Y0.2Yb0.2)3TaO7 High-entropy Ceramic [J]. Journal of Inorganic Materials, 2021, 36(4): 405-410. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||