Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (6): 634-646.DOI: 10.15541/jim20220640
Special Issue: 【结构材料】高导热陶瓷(202409); 【结构材料】陶瓷基复合材料(202409)
• REVIEW • Previous Articles Next Articles
CHEN Qiang(), BAI Shuxin(), YE Yicong()
Received:
2022-10-31
Revised:
2023-01-18
Published:
2023-01-31
Online:
2023-01-31
Contact:
BAI Shuxin, professor. E-mail: shuxinde2021@163.com;About author:
CHEN Qiang (1992-), male, PhD candidate. E-mail: 13548774386@163.com
CLC Number:
CHEN Qiang, BAI Shuxin, YE Yicong. Highly Thermal Conductive Silicon Carbide Ceramics Matrix Composites for Thermal Management: a Review[J]. Journal of Inorganic Materials, 2023, 38(6): 634-646.
Producer | Brand | Modulus/GPa | Strength/MPa | Density/(g·cm-3) | Diameter/μm | TC/(W·m-1·K-1) |
---|---|---|---|---|---|---|
Nicalon | NL202 | 220 | 3000 | 2.55 | 14 | 2.97 |
Hi-Nicalon | 270 | 2800 | 2.74 | 12 | 7.77 | |
Hi-Nicalon-S | 420 | 2600 | 3.05 | 12 | 18.4 | |
Tyranno | Lox M | 187 | 3300 | 2.48 | 11 | 1.4 |
ZMI | 200 | 3400 | 2.48 | 11 | 2.5 | |
SA | 380 | 2800 | 3.10 | 10/7.5 | 65 | |
Sylramic | Sylramic | 400 | 2800 | 3.05 | 10 | 40-45 |
Sylramic-iBN | 400 | 3200 | 3.10 | 10 | >46 | |
KD[ | KD-A | 170 | 2100 | 2.43 | 12.3 | - |
KD-B | 300 | 3000 | 2.76 | 11.2 | ||
KD-C | 320 | 2800 | 2.87 | 11.1 |
Table 1 Properties and products of silicon carbide based fibers[21]
Producer | Brand | Modulus/GPa | Strength/MPa | Density/(g·cm-3) | Diameter/μm | TC/(W·m-1·K-1) |
---|---|---|---|---|---|---|
Nicalon | NL202 | 220 | 3000 | 2.55 | 14 | 2.97 |
Hi-Nicalon | 270 | 2800 | 2.74 | 12 | 7.77 | |
Hi-Nicalon-S | 420 | 2600 | 3.05 | 12 | 18.4 | |
Tyranno | Lox M | 187 | 3300 | 2.48 | 11 | 1.4 |
ZMI | 200 | 3400 | 2.48 | 11 | 2.5 | |
SA | 380 | 2800 | 3.10 | 10/7.5 | 65 | |
Sylramic | Sylramic | 400 | 2800 | 3.05 | 10 | 40-45 |
Sylramic-iBN | 400 | 3200 | 3.10 | 10 | >46 | |
KD[ | KD-A | 170 | 2100 | 2.43 | 12.3 | - |
KD-B | 300 | 3000 | 2.76 | 11.2 | ||
KD-C | 320 | 2800 | 2.87 | 11.1 |
Fig. 1 Microstructures and thermal conductivities of Si-diamond-SiC composites with different diamond volume contents[31] (a) Si-20% diamond (sintered at 1523 K); (b) Si-60% diamond (sintered at 1643 K); (c) Fracture surface of (b); (d) EDX of(c); (e) XRD patterns of (a, b); (f) Experimental and theoretical thermal conductivity of Si-diamond-SiC composites
Fig. 2 Microstructures and thermal conductivities of diamond/SiC composites with different diamond volume contents[32] (a) RBSD1; (b) RBSD2; (c) RBSD3; (d) RBSD4; (e) Diamond/SiC interface; (f) Graphite interlayer in diamond/SiC interfacial region; (g) TEM image of diamond/SiC interfacial region in post-annealing RBSD; (h) Thermal conductivities of RBSDs before and after high temperature annealing
Producer | Brand | Modulus/GPa | Strength/MPa | Density/(g·cm-3) | Diameter/μm | TC/(W·m-1·K-1) | |
---|---|---|---|---|---|---|---|
UCC | P75 | 517 | 2100 | 2.00 | 10 | 185 | |
P100 | 759 | 2410 | 2.15 | 10 | 520 | ||
P-120 | 828 | 2410 | 2.18 | 10 | 640 | ||
Mitsubishi | K-1100 | 931 | 3100 | 2.2 | 10 | 1000 | |
K13D2U | 935 | 3700 | 2.21 | 10 | 800 | ||
K13C2U | 900 | 3800 | 2.2 | 10 | 620 | ||
K63B12 | 860 | 2600 | 2.15 | 10 | 400 | ||
Nippon | Granoc | 920 | 3530 | 2.19 | 7 | 600 | |
YS-95A | |||||||
Granoc | 880 | 3530 | 2.18 | 7 | 500 | ||
YS-90A | |||||||
NOCVARB | NM6030-15 | ≥550 | ≥1500 | ≥2.1 | - | ≥250 | |
NM9050-20 | ≥850 | ≥2000 | ≥2.15 | - | ≥450 | ||
NM9080-20 | ≥850 | ≥2000 | ≥2.15 | - | ≥750 | ||
NMA080-25 | ≥950 | ≥2500 | ≥2.15 | - | ≥750 | ||
TIANCE-TECH | TC-HC-600-S | 750 | 2300 | 2.20 | 13 | 600 | |
ECO | - | 500-900 | 2500-3500 | 2.2 | 8-12 | 500-800 | |
TOYI-CARBEN | TYG-1 | 800 | 2300 | 2.2 | 12 | 600 | |
TYG-2 | 900 | 2500 | 2.2 | 12 | 800 |
Table 2 Properties and products of pitch based carbon fibers[42-43]
Producer | Brand | Modulus/GPa | Strength/MPa | Density/(g·cm-3) | Diameter/μm | TC/(W·m-1·K-1) | |
---|---|---|---|---|---|---|---|
UCC | P75 | 517 | 2100 | 2.00 | 10 | 185 | |
P100 | 759 | 2410 | 2.15 | 10 | 520 | ||
P-120 | 828 | 2410 | 2.18 | 10 | 640 | ||
Mitsubishi | K-1100 | 931 | 3100 | 2.2 | 10 | 1000 | |
K13D2U | 935 | 3700 | 2.21 | 10 | 800 | ||
K13C2U | 900 | 3800 | 2.2 | 10 | 620 | ||
K63B12 | 860 | 2600 | 2.15 | 10 | 400 | ||
Nippon | Granoc | 920 | 3530 | 2.19 | 7 | 600 | |
YS-95A | |||||||
Granoc | 880 | 3530 | 2.18 | 7 | 500 | ||
YS-90A | |||||||
NOCVARB | NM6030-15 | ≥550 | ≥1500 | ≥2.1 | - | ≥250 | |
NM9050-20 | ≥850 | ≥2000 | ≥2.15 | - | ≥450 | ||
NM9080-20 | ≥850 | ≥2000 | ≥2.15 | - | ≥750 | ||
NMA080-25 | ≥950 | ≥2500 | ≥2.15 | - | ≥750 | ||
TIANCE-TECH | TC-HC-600-S | 750 | 2300 | 2.20 | 13 | 600 | |
ECO | - | 500-900 | 2500-3500 | 2.2 | 8-12 | 500-800 | |
TOYI-CARBEN | TYG-1 | 800 | 2300 | 2.2 | 12 | 600 | |
TYG-2 | 900 | 2500 | 2.2 | 12 | 800 |
Fig. 3 Diagram of fabrication and microstructure of the 3D HTC C/C-SiC composite[25] (a) Fabrication process of 3D HTC C/C-SiC; (b-f) Microstructures of the 3D HTC C/C-SiC composite; (g) Interface energy spectrum diagram of the 3D HTC C/C-SiC; (h) Ablation tests and (i) temperature curves of the C/C-SiC
Fig. 4 Surface topographies of the as-ablated C/C-SiC[47] (a) Image of the as-ablated C/C-SiC; (b-d) Magnification images of (b) middle region, (c) area “A” and (d) naked fibers in the center region of (a)
Fig. 6 Microstructures of SiC fiber with electrodeposited CNTs and thermophysical properties of SiCf/SiC compersites[57] (a) Surface of SiC fibers with CNTs; (b) Surface of SiC fibers without CNTs; (c) Interface between CNTs and PyC; (d) TEM image of PyC deposited on CNTs; (e, f) HRTEM images of PyC deposited on (e) SiC fibers and (f) CNTs; (g) Bending strength and (h) thermal conductivity of SiC/SiC composites with different interfaces
Fig. 8 Characterization of diamond/SiC interfacial zone[58] (a) TEM image of diamond and SiC separated by a layer of graphite with lighter contrast; (b) HRTEM image of the rectangular region in (a) showing the graphite (G) and diamond (D) zones; (c-e) TEM and HRTEM images of (c, d) graphite layer and (e) reaction formed nano-crystalline SiC with stacking faults; (f) TEM image of Al4C3 formed adjacent to the interface; (g) HRTEM image from the rectangular region in (f); (h) ADF STEM of diamond/SiC interfacial area in (f)
Fig. 9 Microstructures and thermal conductivities of SiCf/SiC composites with different heat-treatment[59] (a) SiC matrix without heat-treatment; (b) SiC matrix with 1700 ℃-2 h heat-treatment; (c) SiC matrix with 1900 ℃-2 h heat-treatment; (d-f) TEM images of SiC matrix corresponding to (a-c); (g) Thermal conductivity of 2D SiCf/SiC after different heat-treatments; (h) Full width at half maximum of (111) diffraction crystal plane after different heat-treatments
[1] |
PARTHASARATHY T A, PETRY M D, CINIBULK M K, et al. Thermal and oxidation response of UHTC leading edge samples exposed to simulated hypersonic flight conditions. Journal of the American Ceramic Society, 2013, 96(3):907.
DOI URL |
[2] |
UYANNA O, NAJAFI H. Thermal protection systems for space vehicles: a review on technology development, current challenges and future prospects. Acta Astronautica, 2020, 176: 341.
DOI URL |
[3] |
NOZAWA T, HINOKI T, HASEGAWA A, et al. Recent advances and issues in development of silicon carbide composites for fusion applications. Journal of Nuclear Materials, 2009, 386-388: 622.
DOI URL |
[4] |
YAO X M, WANG X J, LIU X J, et al. Friction-wear properties and mechanism of hard facing pairs of SiC and WC. Journal of Inorganic Materials, 2019, 34(6):673.
DOI URL |
[5] | 肖鹏, 熊翔, 张红波, 等. C/C-SiC陶瓷制动材料的研究现状与应用. 中国有色金属学报, 2005, 15(5):667. |
[6] |
KRENKEL W, BERNDT F. C/C-SiC composites for space applications and advanced friction systems. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2005, 412(1/2):177.
DOI URL |
[7] |
LUO L, WANG Y G, LIU L P, et al. Carbon fiber reinforced silicon carbide composite-based sharp leading edges in high enthalpy plasma flows. Composites Part B-Engineering, 2018, 135: 35.
DOI URL |
[8] |
WANG X, GAO X, ZHANG Z, et al. Advances in modifications and high-temperature applications of silicon carbide ceramic matrix composites in aerospace: a focused review. Journal of the European Ceramic Society, 2021, 41(9):4671.
DOI URL |
[9] |
SLACK G A. Thermal conductivity of pure and impure silicon, silicon carbide, and diamond. Journal of Applied Physics, 1964, 35(12):3460.
DOI URL |
[10] |
ZHOU Y, HIRAO K, WATARI K, et al. Thermal conductivity of silicon carbide densified with rare-earth oxide additives. Journal of the European Ceramic Society, 2004, 24(2):265.
DOI URL |
[11] |
AN Q L, CHEN J, MING W W, et al. Machining of SiC ceramic matrix composites: a review. Chinese Journal of Aeronautics, 2021, 34(4):540.
DOI URL |
[12] |
EOM J H, KIM Y W, SONG I H. Effects of the initial α-SiC content on the microstructure, mechanical properties, and permeability of macroporous silicon carbide ceramics. Journal of the European Ceramic Society, 2012, 32(6):1283.
DOI URL |
[13] | 张立同, 成来飞, 徐永东. 新型碳化硅陶瓷基复合材料的研究进展. 航空制造技术, 2003(1): 24. |
[14] |
YUAN Q, SONG Y C. Research and development of continuous SiC fibers and SiCf/SiC composities. Journal of Inorganic Materials, 2016, 31(11):1157.
DOI |
[15] |
LIU G, ZHANG X, YANG J, et al. Recent advances in joining of SiC-based materials (monolithic SiC and SiCf/SiC composites): joining processes, joint strength, and interfacial behavior. Journal of Advanced Ceramics, 2019, 8(1):19.
DOI |
[16] |
KATOH Y, OZAWA K, SHIH C, et al. Continuous SiC fiber, CVI SiC matrix composites for nuclear applications: properties and irradiation effects. Journal of Nuclear Materials, 2014, 448(1/2/3):448.
DOI URL |
[17] | XU Y D, CHENG L F, ZHANG L T. Three dimensional textile SiC/SiC composites by chemical vapor infiltration. Journal of Inorganic Materials, 2001, 16(2):344. |
[18] |
LIU W, WEI Y, DENG J. Carbon-fiber-reinforced C-SiC binary matrix composites. Carbon, 1995, 33(4):441.
DOI URL |
[19] |
HU C L, HONG W H, XU X J, et al. Sandwich-structured C/C-SiC composites fabricated by electromagnetic-coupling chemical vapor infiltration. Scientific Reports, 2017, 7: 13120.
DOI PMID |
[20] |
STALIN M, RAJAGURU K, RANGARAJ L. Processing of Cf/SiC composites by hot pressing using polymer binders followed by polymer impregnation and pyrolysis. Journal of the European Ceramic Society, 2020, 40(2):290.
DOI URL |
[21] |
OKAMURA K, SHIMOO T, SUZUYA K, et al. SiC-based ceramic fibers prepared via organic-to-inorganic conversion process-a review. Journal of the Ceramic Society of Japan, 2006, 114(6):445.
DOI URL |
[22] | 张建可.树脂基碳纤维复合材料的热物理性能之一——导热系数. 中国空间科学技术, 1987, (3):55. |
[23] |
MARADUDIN A A. The lattice thermal conductivity of an isotopically isordered crystal. Journal of the American Chemical Society, 1964, 86(17):3405.
DOI URL |
[24] |
NI Y, XIONG S, VOLZ S, et al. Thermal transport along the dislocation line in silicon carbide. Physical Review Letters, 2014, 113(12):124301.
DOI URL |
[25] |
HUANG D, TAN R X, LIU L, et al. Preparation and properties of the three-dimensional highly thermal conductive carbon/carbon- silicon carbide composite using the mesophase-pitch-based carbon fibers and pyrocarbon as thermal diffusion channels. Journal of the European Ceramic Society, 2021, 41(8):4438.
DOI URL |
[26] | SNEAD L L, NOZAWA T, KATOH Y, et al. Handbook of SiC properties for fuel performance modeling. Journal of Nuclear Materials, 2007, 371(1/2/3):329. |
[27] | GRAEBNER J E. Thermal Conductivity of Diamond. In: PAN L S, KANIA D R. Boston, Diamond:Electronic Properties and Applications. MA: Springer US, 1995: 285. |
[28] |
YE C, WU H, ZHU S P, et al. Microstructure of high thermal conductivity mesophase pitch-based carbon fibers. New Carbon Materials, 2021, 36(5):980.
DOI URL |
[29] | 高晓晴, 郭全贵, 刘朗, 等. 高导热炭材料的研究进展. 功能材料, 2006(2): 173. |
[30] | DONALD T M, GLEN A S. Conductivity of single crystals. In SHINDE S L, GOELA J S. High thermal conductivity materials. New York: Springer, 2006: 21. |
[31] |
ZHU C X, LANG J, MA N G. Preparation of Si-diamond-SiC composites by in-situ reactive sintering and their thermal properties. Ceramics International, 2012, 38(8):6131.
DOI URL |
[32] |
ZHANG Y Y, WANG T S, HSU C Y, et al. Thermal transport characteristics in diamond/SiC composites via molten Si infiltration. Ceramics International, 2021, 47(12):17084.
DOI URL |
[33] | 李亮.碳化硅纤维高温氧化行为研究. 长沙: 国防科学技术大学硕士学位论文, 2016. |
[34] | EKSTROM T, ZHENG J, KLOUB K, et al. Heat conductive material. United States, Grant, 6914025. 2005.07.05. |
[35] |
YANG Z L, HE X B, WU M, et al. Fabrication of diamond/SiC composites by Si-vapor vacuum reactive infiltration. Ceramics International, 2013, 39(3):3399.
DOI URL |
[36] | ZHENG W, HE X B, WU M, et al. Preparation and thermal conductivities of diamond/SiC composites. Applied Physics A-Materials Science & Processing, 2018, 124(12):804. |
[37] |
YANG Z L, HE X B, WU M, et al. Infiltration mechanism of diamond/SiC composites fabricated by Si-vapor vacuum reactive infiltration process. Journal of the European Ceramic Society, 2013, 33(4):869.
DOI URL |
[38] |
MATTHEY B, KUNZE S, HORNER M, et al. SiC-bonded diamond materials produced by pressureless silicon infiltration. Journal of Materials Research, 2017, 32(17):3362.
DOI URL |
[39] |
SHIMONO M, KUME S. HIP-sintered composites of C (Diamond)/ SiC. Journal of the American Ceramic Society, 2004, 87(4):752.
DOI URL |
[40] | 李子晗. 中间相沥青基碳纤维复合材料研究进展及发展前景. 新型工业化, 2022, 12(8):174. |
[41] | 宁亮.中间相沥青基碳纤维的制备及其表面处理的研究. 北京: 北京化工大学硕士学位论文, 2009. |
[42] | 毛德君. 沥青基碳纤维的生产及应用. 炼油与化工, 2002, 13(4):3. |
[43] | 徐兵.高导热沥青基炭纤维的制备及其在三维炭/炭复合材料中的应用研究. 武汉: 武汉科技大学博士学位论文, 2018. |
[44] |
CALEBRESE C, EISMAN G A, LEWIS D J, et al. Swelling and related mechanical and physical properties of carbon nanofiber filled mesophase pitch for use as a bipolar plate material. Carbon, 2010, 48(13):3939.
DOI URL |
[45] |
EDIE D D, FOX N K, BARNETT B C, et al. Melt-spun non-circular carbon fibers. Carbon, 1986, 24(4):477.
DOI URL |
[46] |
YOON S H, KORAI Y, MOCHIA I, et al. Axial nano-scale microstructures in graphitized fibers inherited from liquid crystal mesophase pitch. Carbon, 1996, 34(1):83.
DOI URL |
[47] |
FANG D, CHEN Z, SONG Y, et al. Morphology and microstructure of 2.5 dimension C/SiC composites ablated by oxyacetylene torch. Ceramics International, 2009, 35: 1249.
DOI URL |
[48] |
CAO L Y, WANG J, LIU Y S, et al. Effect of heat transfer channels on thermal conductivity of silicon carbide composites reinforced with pitch-based carbon fibers. Journal of the European Ceramic Society, 2022, 42(2):420.
DOI URL |
[49] |
CAO L Y, LIU Y S, ZHANG Y H, et al. Thermal conductivity and bending strength of SiC composites reinforced by pitch-based carbon fibers. Journal of Advanced Ceramics, 2022, 11(2):247.
DOI |
[50] |
GUO S Q. Thermal and electrical properties of hot-pressed short pitch-based carbon fiber-reinforced ZrB2-SiC matrix composites. Ceramics International, 2013, 39(5):5733.
DOI URL |
[51] |
GUO S Q, NAITO K, KAGAWA Y. Mechanical and physical behaviors of short pitch-based carbon fiber-reinforced HfB2-SiC matrix composites. Ceramics International, 2013, 39(2):1567.
DOI URL |
[52] |
CHEN S, FENG Y, QIN M, et al. Improving thermal conductivity in the through-thickness direction of carbon fibre/SiC composites by growing vertically aligned carbon nanotubes. Carbon, 2017, 116: 84.
DOI URL |
[53] |
HU M, YANG Z H. Perspective on multi-scale simulation of thermal transport in solids and interfaces. Physical Chemistry Chemical Physics, 2021, 23(9):5680.
DOI URL |
[54] |
LI Z X, LI X Q, ZHANG B X, et al. Enhanced thermal and mechanical properties of optimized SiCf/SiC composites with in-situ CNTs on PyC interface. Ceramics International, 2020, 46(11):18071.
DOI URL |
[55] |
CUI G Y, LUO R Y, WANG L Y, et al. Effect of SiC nanowires on the mechanical properties and thermal conductivity of 3D-SiCf/SiC composites prepared via precursor infiltration pyrolysis. Journal of the European Ceramic Society, 2021, 41(10):5026.
DOI URL |
[56] |
LI J X, LIU Y S, CHEN C, et al. Effects of phenolic resin contents on microstructures and properties of C/SiC-diamond composites. Journal of the American Ceramic Society, 2021, 104(7):3424.
DOI URL |
[57] |
FENG W, ZHANG L T, LIU Y S, et al. The improvement in the mechanical and thermal properties of SiC/SiC composites by introducing CNTs into the PyC interface. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2015, 637: 123.
DOI URL |
[58] |
ZHANG Y Y, HSU C Y, KARANDIKAR P, et al. Interfacial zone surrounding the diamond in reaction bonded diamond/SiC composites: Interphase structure and formation mechanism. Journal of the European Ceramic Society, 2019, 39(16):5190.
DOI URL |
[59] |
FENG W, ZHANG L T, LIU Y S, et al. Increasing the thermal conductivity of 2D SiC/SiC composites by heat-treatment. Fusion Engineering and Design, 2015, 90: 110.
DOI URL |
[60] |
HAN S, LIN J T, YAMADA Y, et al. Enhancing the thermal conductivity and compressive modulus of carbon fiber polymer-matrix composites in the through-thickness direction by nanostructuring the interlaminar interface with carbon black. Carbon, 2008, 46(7):1060.
DOI URL |
[61] |
ZHANG Y H, LIU Y S, CAO Y J, et al. Effect of well-designed graphene heat conductive channel on the thermal conductivity of C/SiC composites. Ceramics International, 2021, 47(13):19115.
DOI URL |
[62] |
ZHANG Y H, LIU Y S, CAO L Y, et al. Three-dimensional micro-pipelines high thermal conductive C/SiC composites. Ceramics International, 2021, 47(24):34333.
DOI URL |
[63] |
PAN Y, WANG J, WANG N, et al. Effects of aligned carbon nanotube microcolumns on mechanical and thermal properties of C/SiC composites prepared by LA-CVI methods. Journal of the European Ceramic Society, 2019, 39(16):5463.
DOI URL |
[64] |
ZHANG Y H, LIU Y S, CAO Y J, et al. Effect of initial density on thermal conductivity of new micro-pipeline heat conduction C/SiC composites. Journal of the American Ceramic Society, 2021, 104(1):645.
DOI URL |
[65] |
SNEAD L L, SCHWARZ O J. Advanced SiC composites for fusion applications. Journal of Nuclear Materials, 1995, 219: 3.
DOI URL |
[66] | NASLAIN R. Hybrid ceramic matrix fibrous composites:an overview. IOP Conference Series: Materials Science and Engineering, 2011, 18: 082002. |
[1] | WEI Xiangxia, ZHANG Xiaofei, XU Kailong, CHEN Zhangwei. Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials [J]. Journal of Inorganic Materials, 2024, 39(9): 965-978. |
[2] | YANG Xin, HAN Chunqiu, CAO Yuehan, HE Zhen, ZHOU Ying. Recent Advances in Electrocatalytic Nitrate Reduction to Ammonia Using Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(9): 979-991. |
[3] | WANG Hao, LIU Xuechao, ZHENG Zhong, PAN Xiuhong, XU Jintao, ZHU Xinfeng, CHEN Kun, DENG Weijie, TANG Meibo, GUO Hui, GAO Pan. Performance of Lateral 4H-SiC Photoconductive Semiconductor Switches by Extrinsic Backside Trigger [J]. Journal of Inorganic Materials, 2024, 39(9): 1070-1076. |
[4] | LIU Pengdong, WANG Zhen, LIU Yongfeng, WEN Guangwu. Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(9): 992-1004. |
[5] | QUAN Wenxin, YU Yiping, FANG Bing, LI Wei, WANG Song. Oxidation Behavior and Meso-macro Model of Tubular C/SiC Composites in High-temperature Environment [J]. Journal of Inorganic Materials, 2024, 39(8): 920-928. |
[6] | MA Binbin, ZHONG Wanling, HAN Jian, CHEN Liangyu, SUN Jingjing, LEI Caixia. ZIF-8/TiO2 Composite Mesocrystals: Preparation and Photocatalytic Activity [J]. Journal of Inorganic Materials, 2024, 39(8): 937-944. |
[7] | HUANG Jie, WANG Liuying, WANG Bin, LIU Gu, WANG Weichao, GE Chaoqun. Research Progress on Modulation of Electromagnetic Performance through Micro-nanostructure Design [J]. Journal of Inorganic Materials, 2024, 39(8): 853-870. |
[8] | HE Sizhe, WANG Junzhou, ZHANG Yong, FEI Jiawei, WU Aimin, CHEN Yifeng, LI Qiang, ZHOU Sheng, HUANG Hao. Fe/Submicron FeNi Soft Magnetic Composites with High Working Frequency and Low Loss [J]. Journal of Inorganic Materials, 2024, 39(8): 871-878. |
[9] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
[10] | WU Xiangquan, TENG Jiachen, JI Xiangxu, HAO Yubo, ZHANG Zhongming, XU Chunjie. Textured Porous Al2O3-SiO2 Composite Ceramic Platelet-sphere Slurry: Characteristics and Simulation of Light Intensity Distribution [J]. Journal of Inorganic Materials, 2024, 39(7): 769-778. |
[11] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[12] | SUN Haiyang, JI Wei, WANG Weimin, FU Zhengyi. Design, Fabrication and Properties of Periodic Ordered Structural Composites with TiB-Ti Units [J]. Journal of Inorganic Materials, 2024, 39(6): 662-670. |
[13] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[14] | WU Xiaochen, ZHENG Ruixiao, LI Lu, MA Haolin, ZHAO Peihang, MA Chaoli. Research Progress on In-situ Monitoring of Damage Behavior of SiCf/SiC Ceramic Matrix Composites at High Temperature Environments [J]. Journal of Inorganic Materials, 2024, 39(6): 609-622. |
[15] | SU Yi, SHI Yangfan, JIA Chenglan, CHI Pengtao, GAO Yang, MA Qingsong, CHEN Sian. Microstructure and Properties of C/HfC-SiC Composites Prepared by Slurry Impregnation Assisted Precursor Infiltration Pyrolysis [J]. Journal of Inorganic Materials, 2024, 39(6): 726-732. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||