Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (7): 717-723.DOI: 10.15541/jim20210610
Special Issue: 【结构材料】高熵陶瓷; 【能源环境】热电材料
• RESEARCH ARTICLE • Previous Articles Next Articles
WANG Pengjiang1(), KANG Huijun1(), YANG Xiong1, LIU Ying2, CHENG Cheng1, WANG Tongmin1
Received:
2021-10-05
Revised:
2021-11-28
Published:
2022-07-20
Online:
2021-12-02
Contact:
KANG Huijun, professor. E-mail: kanghuijun@dlut.edu.cnAbout author:
WANG Pengjiang (1996-), male, Master candidate. E-mail: wpj@mail.dlut.edu.cn
Supported by:
CLC Number:
WANG Pengjiang, KANG Huijun, YANG Xiong, LIU Ying, CHENG Cheng, WANG Tongmin. Inhibition of Lattice Thermal Conductivity of ZrNiSn-based Half-Heusler Thermoelectric Materials by Entropy Adjustment[J]. Journal of Inorganic Materials, 2022, 37(7): 717-723.
Fig. 4 (a) Temperature dependence of electrical conductivity, (b) room temperature carrier concentration and carrier mobility varied with Pt content, temperature dependence of (c) Seebeck coefficient and (d) power factor of ZrNiSn and Zr0.5Hf0.5Ni1-xPtxSn
Fig. 6 (a) Temperature dependence of total thermal conductivity, (b) change of lattice thermal conductivity with configuration entropy at 923 K, (c) temperature dependence of lattice thermal conductivity of Zr0.5Hf0.5Ni1-xPtxSn (x=0, 0.1, 0.15, 0.2, 0.25, 0.3), and (d) comparison of lattice thermal conductivity of different samples [17,23-24,35]
[1] | CHEN Z Y, GAO B, TANG J, et al. Low lattice thermal conductivity by alloying SnTe with AgSbTe2 and CaTe/MnTe. Applied Physics Letters, 2019, 115(7): 0739031. |
[2] | GLEN A S. New Materials and Performance Limits for Thermoelectric Cooling. CRC Handbook of Thermoelectrics. Boca Raton: CRC Press, 1995. |
[3] |
SNYDER G J, TOBERER E S. Complex thermoelectric materials. Nature Materials, 2008, 7(2): 105-114.
DOI URL |
[4] |
CHANG C, WU M H, HE D S, et al. 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals. Science, 2018, 360(6390): 778-782.
DOI URL |
[5] | LI J, WANG Y, YANG X, et al. Processing bulk insulating CaTiO3 into a high-performance thermoelectric material. Chemical Engineering Journal, 2022, 428: 131121. |
[6] |
MA Y, HEIJL R, PALMQVIST A E C. Composite thermoelectric materials with embedded nanoparticles. Journal of Materials Science, 2013, 48(7): 2767-2778.
DOI URL |
[7] | ZHU T J, LIU Y T, FU C G, et al. Compromise and synergy in high-efficiency thermoelectric materials. Advanced Materials, 2017, 29(14): 1605884. |
[8] |
FANG T, ZHENG S Q, ZHOU T, et al. Computational prediction of high thermoelectric performance in p-type half-Heusler compounds with low band effective mass. Physical Chemistry Chemical Physics, 2017, 19(6): 4411-4417.
DOI URL |
[9] |
MAKONGO J P A, MISRA D K, ZHOU X Y, et al. Simultaneous large enhancements in thermopower and electrical conductivity of bulk nanostructured half-Heusler alloys. Journal of the American Chemical Society, 2011, 133(46): 18843-18852.
DOI URL |
[10] |
GALAZKA K, XIE W J, POPULOH S, et al. Tailoring thermoelectric properties of Zr0.43Hf0.57NiSn half-Heusler compound by defect engineering. Rare Metals, 2020, 39(6): 659-670.
DOI URL |
[11] | BOS J W G, DOWNIE R A. Half-Heusler thermoelectrics: a complex class of materials. Journal of Physics-Condensed Matter, 2014, 26(43): 433201. |
[12] | ZHU T J, FU C G, XIE H H, et al. High efficiency half-Heusler thermoelectric materials for energy harvesting. Advanced Energy Materials, 2015, 5(19): 1500588. |
[13] |
LIU Y F, SAHOO P, MAKONGO J P A, et al. Large enhancements of thermopower and carrier mobility in quantum dot engineered bulk semiconductors. Journal of the American Chemical Society, 2013, 135(20): 7486-7495.
DOI URL |
[14] |
ALIABAD H A R, NODEHI Z, MALEKI B, et al. Electronical and thermoelectric properties of half-Heusler ZrNiPb under pressure in bulk and nanosheet structures for energy conversion. Rare Metals, 2019, 38(11): 1015-1023.
DOI URL |
[15] |
GRAF T, FELSER C, PARKIN S S P. Simple rules for the understanding of Heusler compounds. Progress in Solid State Chemistry, 2011, 39(1): 1-50.
DOI URL |
[16] | YANG X, LIU D Q, LI J B, et al. Top-down method to fabricate TiNi1+xSn half-Heusler alloy with high thermoelectric performance. Journal of Materials Science & Technology, 2021, 87: 39-45. |
[17] |
YANG X, JIANG Z, KANG H J, et al. Enhanced thermoelectric performance of Zr1-xTaxNiSn half-Heusler alloys by diagonal-rule doping. ACS Applied Materials Interfaces, 2020, 12(3): 3773-3783.
DOI URL |
[18] |
YAN J L, LIU F S, MA G H, et al. Suppression of the lattice thermal conductivity in NbFeSb-based half-Heusler thermoelectric materials through high entropy effects. Scripta Materialia, 2018, 157: 129-134.
DOI URL |
[19] |
SHEN Q, CHEN L, GOTO T, et al. Effects of partial substitution of Ni by Pd on the thermoelectric properties of ZrNiSn-based half-Heusler compounds. Applied Physics Letters, 2001, 79(25): 4165-4167.
DOI URL |
[20] | YANG X, JIANG Z, LI J B, et al. Identification of the intrinsic atomic disorder in ZrNiSn-based alloys and their effects on thermoelectric properties. Nano Energy, 2020, 78: 105372. |
[21] |
SCHWALL M, BALKE B. Phase separation as a key to a thermoelectric high efficiency. Physical Chemistry Chemical Physics, 2013, 15(6): 1868-1872.
DOI URL |
[22] | XIE W J, WEIDENKAFF A, TANG X F, et al. Recent advances in nanostructured thermoelectric half-Heusler compounds. Nanomaterials- Basel, 2012, 2(4): 379-412. |
[23] |
LIU Y T, XIE H H, FU C G, et al. Demonstration of a phonon-glass electron-crystal strategy in (Hf,Zr)NiSn half-Heusler thermoelectric materials by alloying. Journal of Materials Chemistry A, 2015, 3(45): 22716-22722.
DOI URL |
[24] |
XIE H H, WANG H, PEI Y Z, et al. Beneficial contribution of alloy disorder to electron and phonon transport in half-Heusler thermoelectric materials. Advanced Functional Materials, 2013, 23(41): 5123-5130.
DOI URL |
[25] | SENKOV O N, MILLER J D, MIRACLE D B, et al. Accelerated exploration of multi-principal element alloys with solid solution phases. Nature Communications, 2015, 6: 6529. |
[26] |
ZHANG Y, ZUO T T, TANG Z, et al. Microstructures and properties of high-entropy alloys. Progress in Materials Science, 2014, 61: 1-93.
DOI URL |
[27] |
YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials, 2004, 6(5): 299-303.
DOI URL |
[28] | CANTOR B, CHANG I T H, KNIGHT P, et al. Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2004, 375: 213-218. |
[29] | KOZELJ P, VRTNIK S, JELEN A, et al. Discovery of a superconducting high-entropy alloy. Physical Review Letters, 2014, 113(10): 107001. |
[30] |
KAO Y F, CHEN S K, SHEU J H, et al. Hydrogen storage properties of multi-principal-component CoFeMnTixVyZrz alloys. International Journal of Hydrogen Energy, 2010, 35(17): 9046-9059.
DOI URL |
[31] |
BERARDAN D, FRANGER S, MEENA A K, et al. Room temperature lithium superionic conductivity in high entropy oxides. Journal of Materials Chemistry A, 2016, 4(24): 9536-9541.
DOI URL |
[32] | LIU R H, CHEN H Y, ZHAO K P, et al. Entropy as a gene-like performance indicator promoting thermoelectric materials. Advanced Materials, 2017, 29(38): 1702712. |
[33] | SHAFEIE S, GUO S, HU Q, et al. High-entropy alloys as high- temperature thermoelectric materials. Journal of Applied Physics, 2015, 118(18): 184905. |
[34] |
YANG Q Y, QIU P F, SHI X, et al. Application of entropy engineering in thermoelectrics. Journal of Inorganic Materials, 2021, 36(4): 347-354.
DOI URL |
[35] | GALAZKA K, POPULOH S, XIE W J, et al. Improved thermoelectric performance of (Zr0.3Hf0.7)NiSn half-Heusler compounds by Ta substitution. Journal of Applied Physics, 2014, 115(18): 183704. |
[36] |
XIE W J, YAN Y G, ZHU S, et al. Significant ZT enhancement in p-type Ti(Co,Fe)Sb-InSb nanocomposites via a synergistic high-mobility electron injection, energy-filtering and boundary- scattering approach. Acta Materialia, 2013, 61(6): 2087-2094.
DOI URL |
[37] |
YANG J, MEISNER G P, CHEN L. Strain field fluctuation effects on lattice thermal conductivity of ZrNiSn-based thermoelectric compounds. Applied Physics Letters, 2004, 85(7): 1140-1142.
DOI URL |
[1] | HE Danqi, WEI Mingxu, LIU Ruizhi, TANG Zhixin, ZHAI Pengcheng, ZHAO Wenyu. Heavy-Fermion YbAl3 Materials: One-step Synthesis and Enhanced Thermoelectric Performance [J]. Journal of Inorganic Materials, 2023, 38(5): 577-582. |
[2] | CHENG Cheng, LI Jianbo, TIAN Zhen, WANG Pengjiang, KANG Huijun, WANG Tongmin. Thermoelectric Property of In2O3/InNbO4 Composites [J]. Journal of Inorganic Materials, 2022, 37(7): 724-730. |
[3] | LOU Xunuo, DENG Houquan, LI Shuang, ZHANG Qingtang, XIONG Wenjie, TANG Guodong. Thermal and Electrcial Transport Properities of Ge Doped MnTe Thermoelectrics [J]. Journal of Inorganic Materials, 2022, 37(2): 209-214. |
[4] | LI Wangguo, LIU Dianguang, WANG Kewei, MA Baisheng, LIU Jinling. High Entropy Oxide Ceramics (MgCoNiCuZn)O: Flash Sintering Synthesis and Properties [J]. Journal of Inorganic Materials, 2022, 37(12): 1289-1294. |
[5] | JIN Min, BAI Xudong, ZHANG Rulin, ZHOU Lina, LI Rongbin. Metal Sulfide Ag2S: Fabrication via Zone Melting Method and Its Thermoelectric Property [J]. Journal of Inorganic Materials, 2022, 37(1): 101-106. |
[6] | ZHANG Cencen, WANG Xue, PENG Liangming. Thermoelectric Transport Characteristics of n-type (PbTe)1-x-y(PbS)x(Sb2Se3)y Systems via Stepwise Addition of Dual Components [J]. Journal of Inorganic Materials, 2021, 36(9): 936-942. |
[7] | ZHANG Fengnian, GUO Meng, MIAO Yang, GAO Feng, CHENG Chufei, CHENG Fuhao, LIU Yufeng. Preparation and Sintering Behavior of High Entropy Ceramic (Zr1/7Hf1/7Ce1/7Y2/7La2/7)O2-δ [J]. Journal of Inorganic Materials, 2021, 36(4): 372-378. |
[8] | WANG Yiliang, AI Yunlong, YANG Shuwei, LIANG Bingliang, ZHENG Zhenhuan, OUYANG Sheng, HE Wen, CHEN Weihua, LIU Changhong, ZHANG Jianjun, LIU Zhiyong. Facile Synthesis and Supercapacitor Performance of M3O4(M=FeCoCrMnMg) High Entropy Oxide Powders [J]. Journal of Inorganic Materials, 2021, 36(4): 425-430. |
[9] | YANG Qingyu, QIU Pengfei, SHI Xun, CHEN Lidong. Application of Entropy Engineering in Thermoelectrics [J]. Journal of Inorganic Materials, 2021, 36(4): 347-354. |
[10] | GUO Meng, ZHANG Fengnian, MIAO Yang, LIU Yufeng, YU Jun, GAO Feng. Preparation and Electrical Properties of High Entropy La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3 Perovskite Ceramics Powder [J]. Journal of Inorganic Materials, 2021, 36(4): 431-435. |
[11] | SUN Yanan, YE Li, ZHAO Wenying, CHEN Fenghua, QIU Wenfeng, HAN Weijian, LIU Wei, ZHAO Tong. Synthesis of High Entropy Carbide Nano Powders via Liquid Polymer Precursor Route [J]. Journal of Inorganic Materials, 2021, 36(4): 393-398. |
[12] | SUN Luchao, REN Xiaomin, DU Tiefeng, LUO Yixiu, ZHANG Jie, WANG Jingyang. High Entropy Engineering: New Strategy for the Critical Property Optimizations of Rare Earth Silicates [J]. Journal of Inorganic Materials, 2021, 36(4): 339-346. |
[13] | CAI Jianfeng, WANG Hongxiang, LIU Guoqiang, JIANG Jun. Designing High Entropy Structure in Thermoelectrics [J]. Journal of Inorganic Materials, 2021, 36(4): 399-404. |
[14] | KANG Huijun,ZHANG Xiaoying,WANG Yanxia,LI Jianbo,YANG Xiong,LIU Daquan,YANG Zerong,WANG Tongmin. Effect of Rare-earth Variable-valence Element Eu doping on Thermoelectric Property of BiCuSeO [J]. Journal of Inorganic Materials, 2020, 35(9): 1041-1046. |
[15] | QIU Xiaoxiao,ZHOU Xiying,FU Yuntian,SUN Xiaomeng,WANG Lianjun,JIANG Wan. Influence of Ge1-xInxTe Microstructure on Thermoelectric Properties [J]. Journal of Inorganic Materials, 2020, 35(8): 916-922. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||