Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (10): 1117-1132.DOI: 10.15541/jim20230037
Special Issue: 【结构材料】超高温结构陶瓷(202312)
• REVIEW • Next Articles
FU Shi1,2(), YANG Zengchao1(), LI Jiangtao1,2()
Received:
2023-01-20
Revised:
2023-04-07
Published:
2023-10-20
Online:
2023-05-24
Contact:
LI Jiangtao, professor. E-mail: lijiangtao@mail.ipc.ac.cn;About author:
FU Shi (1995-), male, PhD candidate. E-mail: fushi18@mails.ucas.ac.cn
Supported by:
CLC Number:
FU Shi, YANG Zengchao, LI Jiangtao. Progress of High Strength and High Thermal Conductivity Si3N4 Ceramics for Power Module Packaging[J]. Journal of Inorganic Materials, 2023, 38(10): 1117-1132.
Material | Al2O3 | AlN | Si3N4 |
---|---|---|---|
Density/(g·cm-3) | 3.9 | 3.3 | 3.2 |
Elasticity modulus/GPa | 370 | 310 | 320 |
Bending strength/MPa | 300-400 | 220-310 | 600-750 |
Fracture toughness/(MPa·m1/2) | 3.5-4.0 | 3.0-3.5 | 6.5-7.5 |
Thermal expansion coefficient/ (×10-6, K-1) | 7-8 | 4.6 | 2.7-3.4 |
Thermal conductivity/ (W·m-1·K-1) | 18-24 | 67-150 | 27-54 |
Dielectric strength/(kV·mm-1) | 10-18 | 14-16 | 12-18 |
Resistivity/(Ω·m) | >1012 | >1012 | >1012 |
Relative permittivity | 9-10 | 6.0-8.5 | 7-9 |
Table 1 Properties of Al2O3, AlN and Si3N4 ceramic substrate materials[8]
Material | Al2O3 | AlN | Si3N4 |
---|---|---|---|
Density/(g·cm-3) | 3.9 | 3.3 | 3.2 |
Elasticity modulus/GPa | 370 | 310 | 320 |
Bending strength/MPa | 300-400 | 220-310 | 600-750 |
Fracture toughness/(MPa·m1/2) | 3.5-4.0 | 3.0-3.5 | 6.5-7.5 |
Thermal expansion coefficient/ (×10-6, K-1) | 7-8 | 4.6 | 2.7-3.4 |
Thermal conductivity/ (W·m-1·K-1) | 18-24 | 67-150 | 27-54 |
Dielectric strength/(kV·mm-1) | 10-18 | 14-16 | 12-18 |
Resistivity/(Ω·m) | >1012 | >1012 | >1012 |
Relative permittivity | 9-10 | 6.0-8.5 | 7-9 |
Fig. 2 Appearance of (a) Si3N4 coppered substrate after 1000 thermal cycles of -40 to 250 ℃, (b) AlN coppered substrate after 7 cycles of -40 to 250 ℃, and (c) side view of the delaminated Cu plate indicated by white circle in (b) [9]
Fig. 4 Effect of grain size on the thermal conductivity of β-Si3N4 with various grain-boundary film thicknesses[35] Grain-boundary film thickness δ=1, 10 and 50 nm. Calculations were performed using the aspect ratio at 5 and the volume fraction of grain boundary phase at 6%. ‘Para’ and ‘perp’ indicate thermal conductivity parallel and perpendicular to the hot-press direction, respectively
Fig. 6 Relationships between ionic radii of rare-earth oxide additives and (a) thermal conductivity, (b) thermal diffusivity and (c) lattice oxygen content of β-Si3N4[43]
Fig. 8 Developments of high thermal conductivity Si3N4 ceramics with different sintering additives systems and sintering methods GPS: Gas pressure sintering, HIP: Hot isostatic pressing, HP: Hot pressed, SRBSN: Sintering of reaction-bonded Si3N4, M-SRBSN: Modified sintering of reaction-bonded Si3N4, SPS: Spark plasma sintering, PLS: pressless sintering, PSRBSN: Pressure-sintered reaction-bonded Si3N4. Numbers in the chart represent relevant references
Fig. 9 Change of (a) average grain size, (b) bending strength, (c) fracture toughness, and (d) thermal conductivity of Si3N4 ceramics with radius of rare earth ion[79] REM: Before annealing; REMH: After annealing
Fig. 12 Effect of carbon addition on the microstructure of Si3N4 ceramics[67] (a, b) Low-magnification images of (a) SN and (b) SNC; (c, d) High- magnification images of (c) SN and (d) SNC. SN: Carbon free; SNC: Containing carbon
Fig. 14 Relationships between thermal conductivity of Si3N4 ceramics prepared by different sintering processes and (a) sintering time, (b) lattice oxygen content and (c) flexural strength[16,93,94]
Fig. 16 Effect of different pre-sintering temperature on the microstructure of Si3N4 after two-step sintering((a) 1500 ℃, (b) 1525 ℃, (c) 1550 ℃ and (d) 1600 ℃), (e) relative density of Si3N4 samples after pre-sintering and two-step sintering, and (f) thermal conductivity and flexural strength of Si3N4 samples after two-step sintering[97]
Fig. 17 Thermal conductivity, bending strength and fracture toughness of Si3N4 ceramics prepared by different sintering methods and additives Numbers in the chart represent relevant references
Fig. 18 Effect of substrate thickness on the dielectric breakdown strength (DBS) of Si3N4 ceramics sintered for (a) 1, (b) 3, (c) 6, (d) 12, (e) 24, and (f) 48 h[117]
Fig. 19 Schematic images of the connecting path for the interface between β-Si3N4 grain and grain boundary phases/ intergranular glassy films (IGFs) in the substrates which have (a) smaller and (b) larger ratio of grain size to substrate thickness[117]
Ceramic substrate (Material code) | Flexural strength/MPa | Fracture toughness/(MPa·m1/2) | Thermal conductivity/(W·m-1·K-1) |
---|---|---|---|
Si3N4 (SN-1) | 669±29 | 10.5±0.2 | 140 |
Si3N4 (SN-2) | 909±303 | 5.2±0.2 | 21 |
Si3N4 (SN-3) | 977±79 | 5.5±0.1 | - |
Si3N4 (SN-4) | 604±25 | 8.0±0.4 | 90 |
AlN | 461±62 | 3.2±0.2 | 180 |
Table 2 Mechanical and thermal properties of Si3N4 ceramic substrates and AlN ceramic substrates for thermal cycle testing[118]
Ceramic substrate (Material code) | Flexural strength/MPa | Fracture toughness/(MPa·m1/2) | Thermal conductivity/(W·m-1·K-1) |
---|---|---|---|
Si3N4 (SN-1) | 669±29 | 10.5±0.2 | 140 |
Si3N4 (SN-2) | 909±303 | 5.2±0.2 | 21 |
Si3N4 (SN-3) | 977±79 | 5.5±0.1 | - |
Si3N4 (SN-4) | 604±25 | 8.0±0.4 | 90 |
AlN | 461±62 | 3.2±0.2 | 180 |
Fig. 20 Images of the SN-1 coppered substrate after different thermal cycles ((a) 10 cycles, (b) 100 cycles, (c) 200 cycles, and (d) 1000 cycles), (e) plots of residual to initial strength ratio vs. thermal cycle number of the coppered substrates, and (f) relationship between residual to initial strength ratio and fracture toughness of the Si3N4 coppered substrates after 10 cycles[118]
[1] | CHOI U M, BLAABJERG F, JORGENSEN S, et al. Power cycling test and failure analysis of molded intelligent power IGBT module under different temperature swing durations. Microelectronics Reliability, 2016, 64: 403. |
[2] | CABELLO M, SOLER V, RIUS G, et al. Advanced processing for mobility improvement in 4H-SiC MOSFETs: a review. Materials Science in Semiconductor Processing, 2018, 78: 22. |
[3] |
BUTTAY C, PLANSON D, ALLARD B, et al. State of the art of high temperature power electronics. Materials Science and Engineering: B, 2011, 176(4): 283.
DOI URL |
[4] |
EDDY C R, GASKILL D K. Silicon carbide as a platform for power electronics. Science, 2009, 324(5933): 1398.
DOI URL |
[5] |
MURAYAMA N, HIRAO K, SANDO M, et al. High-temperature electro-ceramics and their application to SiC power modules. Ceramics International, 2018, 44(4): 3523.
DOI URL |
[6] |
OKUMURA H. Present status and future prospect of widegap semiconductor high-power devices. Japanese Journal of Applied Physics, 2006, 45(10A): 7565.
DOI |
[7] | HIRAO K, ZHOU Y, MIYAZAKI H. 3-Substrate. Wide bandgap power semiconductor packaging. Woodhead Publishing, 2018: 81. |
[8] | KITAYAMA M. High thermal conductivity ceramics. Encyclopedia of materials:technical ceramics and glasses. Oxford: Elsevier, 2021:165. |
[9] |
FUKUDA S, SHIMADA K, IZU N, et al. Crack generation in electroless nickel plating layers on copper-metallized silicon nitride substrates during thermal cycling. Journal of Materials Science: Materials in Electronics, 2017, 28(11): 8278.
DOI URL |
[10] |
RILEY F L. Silicon nitride and related materials. Journal of the American Ceramic Society, 2000, 83(2): 245.
DOI URL |
[11] | HAGGERTY J S, LIGHTFOOT A. Opportunities for enhancing the thermal conductivities of SiC and Si3N4 ceramics through improved processing. Ceramic Engineering and Science Proceedings. 1995: 475. |
[12] |
KRSTIC Z, KRSTIC V D. Silicon nitride: the engineering material of the future. Journal of Materials Science, 2012, 47(2): 535.
DOI URL |
[13] |
HIRAO K, WATARI K, HAYASHI H, et al. High thermal conductivity silicon nitride ceramic. MRS Bulletin, 2001, 26(6): 451.
DOI URL |
[14] |
HIRAO K, ZHOU Y, HYUGA H, et al. High thermal conductivity silicon nitride ceramics. Journal of the Korean Ceramic Society, 2012, 49(4): 380.
DOI URL |
[15] |
WATARI K. High thermal conductivity non-oxide ceramics. Journal of the Ceramic Society of Japan, 2001, 109(1): S7.
DOI URL |
[16] |
ZHOU Y, HYUGA H, KUSANO D, et al. A tough silicon nitride ceramic with high thermal conductivity. Advanced Materials, 2011, 23(39): 4563.
DOI |
[17] |
KITAYAMA M, HIRAO K, TSUGE A, et al. Oxygen content in ß-Si3N4 crystal lattice. Journal of the American Ceramic Society, 1999, 82(11): 3263.
DOI URL |
[18] |
KITAYAMA M, HIRAO K, TSUGE A, et al. Thermal conductivity of β-Si3N4: II, effect of lattice oxygen. Journal of the American Ceramic Society, 2000, 83(8): 1985.
DOI URL |
[19] |
KUSANO D, NODA Y, SHIBASAKI H, et al. Effects of impurity iron content on characteristics of sintered reaction-bonded silicon nitride. International Journal of Applied Ceramic Technology, 2013, 10(4): 690.
DOI URL |
[20] |
MATSUNAGA C, ZHOU Y, KUSANO D, et al. Dielectric breakdown of silicon nitride substrates with various thicknesses. Journal of the Ceramic Society of Japan, 2018, 126(9): 693.
DOI URL |
[21] |
NAKASHIMA Y, HYUGA H, HIRAO K, et al. Thickness dependence of dielectric breakdown strength for silicon nitride substrate. Journal of the Ceramic Society of Japan, 2021, 129(12): 761.
DOI URL |
[22] |
FUKUDA S, SHIMADA K, IZU N, et al. Relationship between the thermal stress and structures of thermal-cycling-induced cracks in electroless nickel plating on metalized substrates. Journal of Materials Science: Materials in Electronics, 2019, 30(6): 5820.
DOI |
[23] |
MIYAZAKI H, HIRAO K, HYUGA H. Round-robin exercise on the three- and four-point flexural strength of thin ceramic plates for power modules. International Journal of Applied Ceramic Technology, 2019, 16(6): 2121.
DOI URL |
[24] | WAKASUGI N, CHEN C, HIRAO K, et al. Thermal evaluation of metalized ceramic substrates for use in next-generation power modules toward international standardization. 2020 IEEE 8th Electronics System-Integration Technology Conference (ESTC), 2020. |
[25] |
HIRAO K, ZHOU Y, HYUGA H, et al. Evaluation of thermal resistance for metalized ceramic substrates using a microheater chip. International Journal of Applied Ceramic Technology, 2021, 19(1): 232.
DOI URL |
[26] |
SLACK G A. Nonmetallic crystals with high thermal conductivity. Journal of Physics and Chemistry of Solids, 1973, 34(2): 321.
DOI URL |
[27] |
SLACK G A, TANZILLI R A, POHL R O, et al. The intrinsic thermal conductivity of AIN. Journal of Physics and Chemistry of Solids, 1987, 48(7): 641.
DOI URL |
[28] | TAKEDA Y. Development of high-thermal-conductivity SiC ceramics. American Ceramic Society Bulletin, 1988, 67(12): 1961. |
[29] |
NAKANO H, WATARI K, HAYASHI H, et al. Microstructural characterization of high-thermal-conductivity aluminum nitride ceramic. Journal of the American Ceramic Society, 2002, 85(12): 3093.
DOI URL |
[30] |
HAMPSHIRE S, PARK H K, THOMPSON D P, et al. α’-Sialon ceramics. Nature, 1978, 274(5674): 880.
DOI |
[31] |
KRäMER M, WITTMÜSS D, KÜPPERS H, et al. Relations between crystal structure and growth morphology of β-Si3N4. Journal of Crystal Growth, 1994, 140(1): 157.
DOI URL |
[32] |
THOMAS A, MÜLLER G. Determination of the concentration of oxygen dissolved in the AlN lattice by hot gas extraction from AlN ceramics. Journal of the European Ceramic Society, 1991, 8(1): 11.
DOI URL |
[33] |
HIROSAKI N, OKAMOTO Y, ANDO M, et al. Thermal conductivity of gas-pressure-sintered silicon nitride. Journal of the American Ceramic Society, 1996, 79(11): 2878.
DOI URL |
[34] |
HIROSAKI N, OKAMOTO Y, ANDO M, et al. Effect of grain growth on the thermal conductivity of silicon nitride. Journal of the Ceramic Society of Japan, 1996, 104(1205): 49.
DOI URL |
[35] |
KITAYAMA M, HIRAO K, TORIYAMA M, et al. Thermal conductivity of ß-Si3N4: I, effects of various microstructural factors. Journal of the American Ceramic Society, 1999, 82(11): 3105.
DOI URL |
[36] |
PRIEST H F, BURNS F C, PRIEST G L, et al. Oxygen content of alpha silicon nitride. Journal of the American Ceramic Society, 1973, 56(7): 395.
DOI URL |
[37] | PEUCKERT M, GREIL P. Oxygen distribution in silicon nitride powders. Journal of Materials Science, 1987, 22: 3717. |
[38] |
KIJIMA K, KATO K, INOUE Z, et al. Oxygen content of α-Si3N4 single crystals. Journal of Materials Science, 1975, 10(2): 362.
DOI URL |
[39] | HIROSAKI N, OKADA A, MATOBA K. Sintering of Si3N4 with the addition of rare-earth-oxides. Journal of the American Ceramic Society, 1988, 71(3): C144. |
[40] |
KITAYAMA M, HIRAO K, KANZAKI S. Effect of rare earth oxide additives on the phase transformation rates of Si3N4. Journal of the American Ceramic Society, 2006, 89(8): 2612.
DOI URL |
[41] |
BECHER P F, PAINTER G S, SHIBATA N, et al. Effects of rare-earth (RE) intergranular adsorption on the phase transformation, microstructure evolution, and mechanical properties in silicon nitride with RE2O3+MgO additives: RE=La, Gd, and Lu. Journal of the American Ceramic Society, 2008, 91(7): 2328.
DOI URL |
[42] |
BECHER P F, SHIBATA N, PAINTER G S, et al. Observations on the influence of secondary Me oxide additives (Me=Si, Al, Mg) on the microstructural evolution and mechanical behavior of silicon nitride ceramics containing RE2O3(RE=La, Gd, Lu). Journal of the American Ceramic Society, 2010, 93(2): 570.
DOI URL |
[43] |
KITAYAMA M, HIRAO K, WATARI K, et al. Thermal conductivity of β-Si3N4: III, effect of rare-earth (RE = La, Nd, Gd, Y, Yb, and Sc) oxide additives. Journal of the American Ceramic Society, 2001, 84(2): 353.
DOI URL |
[44] |
YOKOTA H, YAMADA S, IBUKIYAMA M. Effect of large β-Si3N4 particles on the thermal conductivity of β-Si3N4 ceramics. Journal of the European Ceramic Society, 2003, 23(8): 1175.
DOI URL |
[45] |
YOKOTA H, IBUKIYAMA M. Effect of lattice impurities on the thermal conductivity of β-Si3N4. Journal of the European Ceramic Society, 2003, 23(1): 55.
DOI URL |
[46] |
YOKOTA H, ABE H, IBUKIYAMA M. Effect of lattice defects on the thermal conductivity of β-Si3N4. Journal of the European Ceramic Society, 2003, 23(10): 1751.
DOI URL |
[47] |
YOKOTA H, IBUKIYAMA M. Effect of the addition of β-Si3N4 nuclei on the thermal conductivity of β-Si3N4ceramics. Journal of the European Ceramic Society, 2003, 23(8): 1183.
DOI URL |
[48] |
YOKOTA H, IBUKIYAMA M. Microstructure tailoring for high thermal conductivity of β-Si3N4 ceramics. Journal of the American Ceramic Society, 2003, 86(1): 197.
DOI URL |
[49] |
NEGITA K. Effective sintering aids for Si3N4 ceramics. Journal of Materials Science Letters, 1985, 4(6): 755.
DOI URL |
[50] |
OKAMOTO Y, HIROSAKI N, ANDO M, et al. Effect of sintering additive composition on the thermal conductivity of silicon nitride. Journal of Materials Research, 1998, 13(12): 3473.
DOI URL |
[51] |
HIROSAKI N, OKAMOTO Y, MUNAKATA F, et al. Effect of seeding on the thermal conductivity of self-reinforced silicon nitride. Journal of the European Ceramic Society, 1999, 19(12): 2183.
DOI URL |
[52] |
HAYASHI H, HIRAO K, TORIYAMA M, et al. MgSiN2 addition as a means of increasing the thermal conductivity of β-silicon nitride. Journal of the American Ceramic Society, 2001, 84(12): 3060.
DOI URL |
[53] |
YE J, OKADA A. Microthermal analysis of heat conduction in silicon nitrides. Journal of the American Ceramic Society, 2003, 86(8): 1365.
DOI URL |
[54] |
ZHU X, ZHOU Y, HIRAO K, et al. Processing and thermal conductivity of sintered reaction-bonded silicon nitride. I: effect of Si powder characteristics. Journal of the American Ceramic Society, 2006, 89(11): 3331.
DOI URL |
[55] |
ZHOU Y, ZHU X, HIRAO K, et al. Sintered reaction-bonded silicon nitride with high thermal conductivity and high strength. International Journal of Applied Ceramic Technology, 2008, 5(2): 119.
DOI URL |
[56] |
ZHU X W, SAKKA Y, ZHOU Y, et al. Effect of MgSiN2 addition on gas pressure sintering and thermal conductivity of silicon nitride with Y2O3. Journal of the Ceramic Society of Japan, 2008, 116(1354): 706.
DOI URL |
[57] |
PENG G H, LIANG M, LIANG Z H, et al. Spark plasma sintered silicon nitride ceramics with high thermal conductivity using MgSiN2as additives. Journal of the American Ceramic Society, 2009, 92(9): 2122.
DOI URL |
[58] |
ZHU X, ZHOU Y, HIRAO K, et al. Potential use of only Yb2O3 in producing dense Si3N4 ceramics with high thermal conductivity by gas pressure sintering. Science and Technology of Advanced Materials, 2010, 11(6): 065001.
DOI URL |
[59] |
LEE H M, LEE E B, KIM D L, et al. Comparative study of oxide and non-oxide additives in high thermal conductive and high strength Si3N4 ceramics. Ceramics International, 2016, 42(15): 17466.
DOI URL |
[60] |
LIANG H, ZENG Y, ZUO K, et al. Mechanical properties and thermal conductivity of Si3N4 ceramics with YF3 and MgO as sintering additives. Ceramics International, 2016, 42(14): 15679.
DOI URL |
[61] |
KIM J M, KO S I, KIM H N, et al. Effects of microstructure and intergranular glassy phases on thermal conductivity of silicon nitride. Ceramics International, 2017, 43(7): 5441.
DOI URL |
[62] |
ZHOU Y, HYUGA H, KUSANO D, et al. Effects of yttria and magnesia on densification and thermal conductivity of sintered reaction-bonded silicon nitrides. Journal of the American Ceramic Society, 2019, 102(4): 1579.
DOI URL |
[63] |
LI Y, KIM H N, WU H, et al. Enhanced thermal conductivity in Si3N4ceramic with the addition of Y2Si4N6C. Journal of the American Ceramic Society, 2018, 101(9): 4128.
DOI URL |
[64] |
YANG C, LIU Q, ZHANG B, et al. Effect of MgF2 addition on mechanical properties and thermal conductivity of silicon nitride ceramics. Ceramics International, 2019, 45(10): 12757.
DOI URL |
[65] |
WANG W, YAO D, CHEN H, et al. ZrSi2-MgO as novel additives for high thermal conductivity of β‐Si3N4 ceramics. Journal of the American Ceramic Society, 2019, 103(3): 2090.
DOI URL |
[66] |
DUAN Y, ZHANG J, LI X, et al. High thermal conductivity silicon nitride ceramics prepared by pressureless sintering with ternary sintering additives. International Journal of Applied Ceramic Technology, 2019, 16(4): 1399.
DOI URL |
[67] |
LI Y, KIM H N, WU H, et al. Enhanced thermal conductivity in Si3N4 ceramic by addition of a small amount of carbon. Journal of the European Ceramic Society, 2019, 39(2/3): 157.
DOI URL |
[68] | LI Y, KIM H N, WU H, et al. Microstructure and thermal conductivity of gas-pressure-sintered Si3N4 ceramic: the effects of Y2O3 additive content. Journal of the European Ceramic Society, 2021, 41(1): 274. |
[69] |
LIANG H, WANG W, ZUO K, et al. Effect of LaB6 addition on mechanical properties and thermal conductivity of silicon nitride ceramics. Ceramics International, 2020, 46(11): 17776.
DOI URL |
[70] |
LIANG H, WANG W, ZUO K, et al. YB2C2: a new additive for fabricating Si3N4 ceramics with superior mechanical properties and medium thermal conductivity. Ceramics International, 2020, 46(4): 5239.
DOI URL |
[71] |
WANG W, YAO D, LIANG H, et al. Effect of the binary nonoxide additives on the densification behavior and thermal conductivity of Si3N4ceramics. Journal of the American Ceramic Society, 2020, 103(10): 5891.
DOI URL |
[72] |
WANG W, YAO D, LIANG H, et al. Effect of in-situ formed Y2O3 by metal hydride reduction reaction on thermal conductivity of β-Si3N4 ceramics. Journal of the European Ceramic Society, 2020, 40(15): 5316.
DOI URL |
[73] |
WANG W, YAO D, LIANG H, et al. Novel silicothermic reduction method to obtain Si3N4 ceramics with enhanced thermal conductivity and fracture toughness. Journal of the European Ceramic Society, 2021, 41(2): 1735.
DOI URL |
[74] |
WU L X, ZHU L L, YOU Y, et al. Fabrication and properties of pressure-sintered reaction-bonded Si3N4 ceramics with addition of Eu2O3-MgO-Y2O3. Ceramics International, 2021, 47(1): 935.
DOI URL |
[75] |
WANG W, YAO D, LIANG H, et al. Improved thermal conductivity of β-Si3N4 ceramics through the modification of the liquid phase by using GdH2 as a sintering additive. Ceramics International, 2021, 47(4): 5631.
DOI URL |
[76] | WANG W, YAO D, LIANG H, et al. Enhanced thermal conductivity in Si3N4 ceramics prepared by using ZrH2 as an oxygen getter. Journal of Alloys and Compounds, 2021, 855: 157451. |
[77] |
WANG W D, CHEN H B, LI S S, et al. Preparation of silicon nitride with high thermal conductivity and high flexural strength using YbH2-MgO as sintering additive. Journal of Inorganic Materials, 2021, 36(9): 959.
DOI URL |
[78] |
HUANG M, HUANG Y, OU J, et al. Effect of a new nonoxide additive Y3Si2C2 on the thermal conductivity and mechanical properties of Si3N4 ceramics. International Journal of Applied Ceramic Technology, 2022, 19(6): 3403.
DOI URL |
[79] |
FU S, YANG Z C, LI H H, et al. Mechanical properties and thermal conductivity of Si3N4 ceramics with composite sintering additives. Journal of Inorganic Materials, 2022, 37(9): 947.
DOI URL |
[80] |
FU S, YANG Z, LI H, et al. Effects of Gd2O3 and MgSiN2 sintering additives on the thermal conductivity and mechanical properties of Si3N4 ceramics. International Journal of Applied Ceramic Technology, 2023, 20(3): 1855.
DOI URL |
[81] | UCHIDA N, KOIZUMI M, SHIMADA M. Fabrication of Si3N4 ceramics with metal nitride additives by isostatic hot-pressing. Journal of the American Ceramic Society, 1985, 68(2): C-38. |
[82] |
ABE O. Sintering of silicon-nitride with alkaline-earth nitrides. Ceramics International, 1990, 16(1): 53.
DOI URL |
[83] |
PENG G H, JIANG G J, ZHUANG H R, et al. A novel route for preparing MgSiN2 powder by combustion synthesis. Materials Science and Engineering: A, 2005, 397(1/2): 65.
DOI URL |
[84] | 杨建辉, 陈义祥, 刘光华, 等. 自蔓延高温合成制备单相氮化硅镁粉体. 硅酸盐学报, 2011, 39(2): 177. |
[85] |
YANG J H, QIU J F, LI J T. Preparation of single-phase magnesium silicon nitride powder by a two-step process. Ceramics International, 2011, 37(2): 673.
DOI URL |
[86] |
NAKASHIMA Y, OZEKI Y, ZHOU Y, et al. Synthesis of MgSiN2 under 0.1 MPa of nitrogen pressure via combustion. Ceramics International, 2021, 47(22): 31383.
DOI URL |
[87] |
WANG W, YAO D, LIANG H, et al. Improved thermal conductivity of β‐Si3N4 ceramics by lowering SiO2/Y2O3 ratio using YH2 as sintering additive. Journal of the American Ceramic Society, 2020, 103(10): 5567.
DOI URL |
[88] |
LIAO S, ZHOU L, JIANG C, et al. Thermal conductivity and mechanical properties of Si3N4 ceramics with binary fluoride sintering additives. Journal of the European Ceramic Society, 2021, 41(14): 6971.
DOI URL |
[89] |
LIAO S, ZHUANG Y, WANG J, et al. Synergistic effect of binary fluoride sintering additives on the properties of silicon nitride ceramics. Ceramics International, 2022, 48(15): 21832.
DOI URL |
[90] | KUMAR K, PARK Y J, KIM M J, et al. Influence of ternary oxide additives on thermal conductivity of pressureless sintered Si3N4. Materials Letters, 2022, 328: 133189. |
[91] |
GUO W M, WU L X, MA T, et al. Rapid fabrication of Si3N4 ceramics by reaction-bonding and pressureless sintering. Journal of the European Ceramic Society, 2016, 36(16): 3919.
DOI URL |
[92] |
LI W, WU Y, HUANG R, et al. Effect of Si addition on the mechanical and thermal properties of sintered reaction bonded silicon nitride. Journal of the European Ceramic Society, 2017, 37(15): 4491.
DOI URL |
[93] |
ZHOU Y, HYUGA H, KUSANO D, et al. Development of high-thermal-conductivity silicon nitride ceramics. Journal of Asian Ceramic Societies, 2015, 3(3): 221.
DOI URL |
[94] |
NAKASHIMA Y, ZHOU Y, TANABE K, et al. Effects of nitridation temperature on properties of sintered reaction‐bonded silicon nitride. International Journal of Applied Ceramic Technology, 2023, 20(2): 1071.
DOI URL |
[95] |
ZHU X, SAKKA Y, ZHOU Y, et al. The effect of embedding conditions on the thermal conductivity of β-Si3N4. Journal of the Ceramic Society of Japan, 2006, 114(1335): 1093.
DOI URL |
[96] |
HU F, ZHU T, XIE Z, et al. Elimination of grain boundaries and its effect on the properties of silicon nitride ceramics. Ceramics International, 2020, 46(8): 12606.
DOI URL |
[97] |
HU J, ZHANG B, LI C, et al. Fabrication of Si3N4 ceramics with high thermal conductivity and flexural strength via novel two-step gas-pressure sintering. Journal of the European Ceramic Society, 2022, 42(12): 4846.
DOI URL |
[98] |
ZHU X, HAYASHI H, ZHOU Y, et al. Influence of additive composition on thermal and mechanical properties of β-Si3N4ceramics. Journal of Materials Research, 2004, 19(11): 3270.
DOI URL |
[99] |
ZHU X, SAKKA Y, ZHOU Y, et al. Processing and properties of sintered reaction-bonded silicon nitride with Y2O3-MgSiN2: effects of Si powder and Li2O addition. Acta Materialia, 2007, 55(16): 5581.
DOI URL |
[100] |
KUSANO D, ADACHI S, TANABE G, et al. Effects of impurity oxygen content in raw Si powder on thermal and mechanical properties of sintered reaction-bonded silicon nitrides. International Journal of Applied Ceramic Technology, 2012, 9(2): 229.
DOI URL |
[101] |
KUSANO D, HYUGA H, ZHOU Y, et al. Effect of aluminum content on mechanical properties and thermal conductivities of sintered reaction-bonded silicon nitride. International Journal of Applied Ceramic Technology, 2014, 11(3): 534.
DOI URL |
[102] | LI S, CHEN H, WANG W, et al. Effects of Y2O3/MgO ratio on mechanical properties and thermal conductivity of silicon nitride ceramics. International Journal of Applied Ceramic Technology, 2022, 19(5): 2873. |
[103] |
LI S, XIA Y, YAO D, et al. Enhanced thermal conductivity and flexural strength of sintered reaction-bonded silicon nitride with addition of (Y0.96Eu0.04)2O3. International Journal of Applied Ceramic Technology, 2023, 20(1): 465.
DOI URL |
[104] |
DUAN Y, ZHANG J, LI X, et al. Low temperature pressureless sintering of silicon nitride ceramics for circuit substrates in powder electronic devices. Ceramics International, 2018, 44(4): 4375.
DOI URL |
[105] |
LIU W, TONG W, LU X, et al. Effects of different types of rare earth oxide additives on the properties of silicon nitride ceramic substrates. Ceramics International, 2019, 45(9): 12436.
DOI URL |
[106] | 鲁欣欣, 刘伟, 李林, 等. MgO-Y2O3-Re2O3添加对氮化硅陶瓷微观组织及性能的影响. 粉末冶金材料科学与工程, 2019, 24(6): 536. |
[107] |
YANG L, DITTA A, FENG B, et al. Study of the comparative effect of sintering methods and sintering additives on the microstructure and performance of Si3N4 ceramic. Materials, 2019, 12(13): 2142.
DOI URL |
[108] |
ZHANG J, CUI W, LI F, et al. Effects of MgSiN2 addition and post-annealing on mechanical and thermal properties of Si3N4 ceramics. Ceramics International, 2020, 46(10): 15719.
DOI URL |
[109] |
DUAN Y, LIU N, ZHANG J, et al. Cost effective preparation of Si3N4 ceramics with improved thermal conductivity and mechanical properties. Journal of the European Ceramic Society, 2020, 40(2): 298.
DOI URL |
[110] |
OH H M, LEE H K. Controlling the width of particle size distribution of Si powder and properties of sintered reaction- bonded silicon nitride (SRBSN) ceramics with high thermal conductivity. Ceramics International, 2020, 46(8): 12517.
DOI URL |
[111] |
YE C, LIU Y, WANG C, et al. Investigation on thermal conductivity and mechanical properties of Si3N4 ceramics via one-step sintering. Ceramics International, 2021, 47(23): 33353.
DOI URL |
[112] |
HU F, ZHU T, XIE Z, et al. Effect of composite sintering additives containing non-oxide on mechanical, thermal and dielectric properties of silicon nitride ceramics substrate. Ceramics International, 2021, 47(10): 13635.
DOI URL |
[113] |
DOW H S, NA M, JUNG Y W, et al. Effect of oxygen impurity on thermal conduction rate of polycrystalline Si3N4. Advanced Engineering Materials, 2021, 23(10): 2170037.
DOI URL |
[114] | JIANG C, ZHUANG Y, WANG J, et al. Preparation, microstructure, and properties of GPS silicon nitride ceramics with β-Si3N4 seeds and nanophase additives. International Journal of Applied Ceramic Technology, 2022, 19(5): 2533. |
[115] |
WANG Y, TIAN J, WU H, et al. Thermal and mechanical properties of Si3N4 ceramics obtained via two-step sintering. Ceramics International, 2022, 48(13): 18294.
DOI URL |
[116] |
IMAMURA H, KAWATA T, HONDA S, et al. A facile method to produce rodlike β-Si3N4 seed crystallites for bimodal structure controlling. Journal of the American Ceramic Society, 2023, 106(3): 1694.
DOI URL |
[117] |
NAKASHIMA Y, ZHOU Y, TANABE K, et al. Effect of microstructures on dielectric breakdown strength of sintered reaction-bonded silicon nitride ceramics. Journal of the American Ceramic Society, 2023, 106(2): 1139.
DOI URL |
[118] |
MIYAZAKI H, ZHOU Y, IWAKIRI S, et al. Improved resistance to thermal fatigue of active metal brazing substrates for silicon carbide power modules using tough silicon nitrides with high thermal conductivity. Ceramics International, 2018, 44(8): 8870.
DOI URL |
[119] |
ZHOU Y, OHJI T, HYUGA H, et al. Fracture resistance behavior of high-thermal-conductivity silicon nitride ceramics. International Journal of Applied Ceramic Technology, 2014, 11(5): 872.
DOI URL |
[120] | MIYAZAKI H, YOSHIZAWA Y I, HIRAO K, et al. Evaluation of fracture toughness of ceramic thin plates through modified single edge-precracked plate method. Scripta Materialia, 2015, 103: 34. |
[1] | ZHANG Yuchen, LU Zhiyao, HE Xiaodong, SONG Guangping, ZHU Chuncheng, ZHENG Yongting, BAI Yuelei. Predictions of Phase Stability and Properties of S-group Elements Containing MAX Borides [J]. Journal of Inorganic Materials, 2024, 39(2): 225-232. |
[2] | LI Lei, CHENG Qunfeng. Recent Advances in the High Performance MXenes Nanocomposites [J]. Journal of Inorganic Materials, 2024, 39(2): 153-161. |
[3] | LIU Yanyan, XIE Xi, LIU Zengqian, ZHANG Zhefeng. Metal Matrix Composites Reinforced by MAX Phase Ceramics: Fabrication, Properties and Bioinspired Designs [J]. Journal of Inorganic Materials, 2024, 39(2): 145-152. |
[4] | KE Xin, XIE Bingqing, WANG Zhong, ZHANG Jingguo, WANG Jianwei, LI Zhanrong, HE Huijun, WANG Limin. Progress of Interconnect Materials in the Third-generation Semiconductor and Their Low-temperature Sintering of Copper Nanoparticles [J]. Journal of Inorganic Materials, 2024, 39(1): 17-31. |
[5] | YANG Pingjun, LI Tiehu, LI Hao, DANG Alei. Effect of Graphene on Graphitization, Electrical and Mechanical Properties of Epoxy Resin Carbon Foam [J]. Journal of Inorganic Materials, 2024, 39(1): 107-112. |
[6] | HU Mengfei, HUANG Liping, LI He, ZHANG Guojun, WU Houzheng. Research Progress on Hard Carbon Anode for Li/Na-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(1): 32-44. |
[7] | DONG Siyin, TIE Shujie, YUAN Ruihan, ZHENG Xiaojia. Research Progress on Low-dimensional Halide Perovskite Direct X-ray Detectors [J]. Journal of Inorganic Materials, 2023, 38(9): 1017-1030. |
[8] | ZHANG Lun, LYU Mei, ZHU Jun. Research Progress of Cs2AgBiBr6 Perovskite Solar Cell [J]. Journal of Inorganic Materials, 2023, 38(9): 1044-1054. |
[9] | CHEN Yu, LIN Puan, CAI Bing, ZHANG Wenhua. Research Progress of Inorganic Hole Transport Materials in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(9): 991-1004. |
[10] | DONG Yiman, TAN Zhan’ao. Research Progress of Recombination Layers in Two-terminal Tandem Solar Cells Based on Wide Bandgap Perovskite [J]. Journal of Inorganic Materials, 2023, 38(9): 1031-1043. |
[11] | GUO Huajun, AN Shuailing, MENG Jie, REN Shuxia, WANG Wenwen, LIANG Zishang, SONG Jiayu, CHEN Hengbin, SU Hang, ZHAO Jinjin. Research Progress of Photoelectric Resistive Switching Mechanism of Halide Perovskite [J]. Journal of Inorganic Materials, 2023, 38(9): 1005-1016. |
[12] | NI Xiaoshi, LIN Ziyang, QIN Muyan, YE Song, WANG Deping. Bioactivity and Mechanical Property of PMMA Bone Cement: Effect of Silanized Mesoporous Borosilicate Bioglass Microspheres [J]. Journal of Inorganic Materials, 2023, 38(8): 971-977. |
[13] | DING Haoming, LI Mian, LI Youbing, CHEN Ke, XIAO Yukun, ZHOU Jie, TAO Quanzheng, Johanna Rosen, YIN Hang, BAI Yuelei, ZHANG Bikun, SUN Zhimei, WANG Junjie, ZHANG Yiming, HUANG Zhenying, ZHANG Peigen, SUN Zhengming, HAN Meikang, ZHAO Shuang, WANG Chenxu, HUANG Qing. Progress in Structural Tailoring and Properties of Ternary Layered Ceramics [J]. Journal of Inorganic Materials, 2023, 38(8): 845-884. |
[14] | WANG Shuling, JIANG Meng, WANG Lianjun, JIANG Wan. n-Type Pb-free AgBiSe2 Based Thermoelectric Materials with Stable Cubic Phase Structure [J]. Journal of Inorganic Materials, 2023, 38(7): 807-814. |
[15] | LIN Junliang, WANG Zhanjie. Research Progress on Ferroelectric Superlattices [J]. Journal of Inorganic Materials, 2023, 38(6): 606-618. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||