Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (9): 933-940.DOI: 10.15541/jim20210721
• RESEARCH ARTICLE • Previous Articles Next Articles
HU Jiajun(), WANG Kai, HOU Xinguang, YANG Ting, XIA Hongyan()
Received:
2021-11-24
Revised:
2022-03-07
Published:
2022-09-20
Online:
2022-06-16
Contact:
XIA Hongyan, associate professor. E-mail: hyxia0707@xjtu.edu.cnAbout author:
HU Jiajun (1993-), male, PhD candidate. E-mail: hujiajun1123@stu.xjtu.edu.cn
Supported by:
CLC Number:
HU Jiajun, WANG Kai, HOU Xinguang, YANG Ting, XIA Hongyan. Boron Phosphide with High Thermal Conductivity: Synthesis by Molten Salt Method and Thermal Management Performance[J]. Journal of Inorganic Materials, 2022, 37(9): 933-940.
Sample | Salt types | Holding time/h | Yield/% |
---|---|---|---|
1 | NaCl | 1 | 41 |
2 | NaCl-KCl | 1 | 39 |
3 | NaCl-KCl-LiCl | 1 | 67 |
4 | NaCl-KCl-LiCl | 5 | 74 |
5 | NaCl-KCl-LiCl | 10 | 64 |
Table 1 Yields of BP under different synthetic conditions
Sample | Salt types | Holding time/h | Yield/% |
---|---|---|---|
1 | NaCl | 1 | 41 |
2 | NaCl-KCl | 1 | 39 |
3 | NaCl-KCl-LiCl | 1 | 67 |
4 | NaCl-KCl-LiCl | 5 | 74 |
5 | NaCl-KCl-LiCl | 10 | 64 |
Fig. 4 Thermal conductivity of the composites (a) Thermal conductivity of the composites; (b) Comparison of BP-BN/EP composites with relevant literatures[16,28⇓⇓⇓⇓⇓⇓ -35]
Fig. 5 Thermal transport properties of pure EP, BP-BN/EP and SBN-BN/EP composites (a) IR thermal images at different time; (b) Temperature changes of sample surface at different time Colorful figures are available on website
Fig. 7 Thermodynamic property of BP-BN/EP and SBN-BN/EP composites (a,d) Curves of storage modulus with temperature change; (b,e) Curves of loss modulus with temperature change; (c,f) Curves of loss factor (tanδ) with temperature change
[1] |
SONG H F, LIU J M, LIU B L, et al. Two dimensional materials for thermal management applications. Joule, 2018, 2(3): 442-463.
DOI URL |
[2] |
MOORE A L, SHI L. Emerging challenges and materials for thermal management of electronics. Mater. Today, 2014, 17(4): 163-174.
DOI URL |
[3] | ZHANG R C, HUANG Z H, SUN D, et al. New insights into thermal conductivity of uniaxially stretched high density polyethylene films. Polymer, 2018, 154: 42-47. |
[4] | CHEN H Y, GINZBURG V V, YANG J, et al. Thermal conductivity of polymerbased composites: fundamentals and applications. Prog. Polym. Sci., 2016, 59: 41-85. |
[5] | BO Z, YING C Y, ZHU H R, et al. Bifunctional sandwich structure of vertically-oriented graphenes and boron nitride nanosheets for thermal management of LEDs and Li-ion battery. Appl. Therm. Eng., 2019, 150: 1016-1027. |
[6] |
WANG X, WU P. Preparation of highly thermally conductive polymer composite at low filler content via a self-assembly process between polystyrene microspheres and boron nitride nanosheets. ACS Appl. Mater. Interfaces, 2017, 9(23): 19934-19944.
DOI URL |
[7] |
SHEN H, GUO J, WANG H, ZHAO N, et al. Bioinspired modification of h-BN for high thermal conductive composite films with aligned structure. ACS Appl. Mater. Interfaces, 2015, 7(10): 5701-5708.
DOI URL |
[8] |
HUANG X, ZHI C, JIANG P, et al. Polyhedral oligosilsesquioxane- modified boron nitride nanotube based epoxy nanocomposites: an ideal dielectric material with high thermal conductivity. Adv. Funct. Mater., 2013, 23(14): 1824-1831.
DOI URL |
[9] |
HU J, HUANG Y, YAO Y, et al. Polymer composite with improved thermal conductivity by constructing a hierarchically ordered three-dimensional interconnected network of BN. ACS Appl. Mater. Interfaces, 2017, 9(15): 13544-13553.
DOI URL |
[10] |
PAN G, YAO Y, ZENG X, et al. Learning from natural nacre: constructing layered polymer composites with high thermal conductivity. ACS Appl. Mater. Interfaces, 2017, 9(38): 33001-33010.
DOI URL |
[11] | SUN R, YAO H, ZHANG H B, et al. Decoration of defect-free graphene nanoplatelets with alumina for thermally conductive and electrically insulating epoxy composites. Compos. Sci. Technol., 2016, 137: 16-23. |
[12] |
YAO Y M, ZHU X D, ZENG X L, et al. Vertically aligned and interconnected SiC nanowire networks leading to significantly enhanced thermal conductivity of polymer composites. ACS Appl. Mater. Interfaces, 2018, 10(11): 9669-9678.
DOI URL |
[13] |
HUANG Y, HU J T, YAO Y M, et al. Manipulating orientation of silicon carbide nanowire in polymer composites to achieve high thermal conductivity. Adv. Mater. Interfaces, 2017, 4(17): 1700446.
DOI URL |
[14] |
YU S Z, HING P, HU X. Thermal conductivity of polystyrene- aluminum nitride composite. Compos. Part A-Appl. S., 2002, 33(2): 289-292.
DOI URL |
[15] | ZHOU Y, YAO Y, CHEN C Y, et al. The use of polyimidemodified aluminum nitride fillers in AlN@PI/epoxy composites with enhanced thermal conductivity for electronic encapsulation. Sci. Rep., 2014, 4: 4779. |
[16] | WANG X W, WU P Y. Melamine foam-supported 3D interconnected boron nitride nanosheets network encapsulated in epoxy to achieve significant thermal conductivity enhancement at an ultralow filler loading. Chem. Eng. J., 2018, 348: 723-731. |
[17] |
HOU X, CHEN Y P, LV L, et al. High-thermal-transport-channel construction within flexible composites via the welding of boron nitride nanosheets. ACS Appl. Nano Mater., 2019, 2(1): 360-368.
DOI URL |
[18] | YANG J, TANG L S, BAO R Y, et al. Largely enhanced thermal conductivity of poly (ethylene glycol)/boron nitride composite phase change materials for solar-thermal-electric energy conversion and storage with very low content of graphene nanoplatelets. Chem. Eng. J., 2017, 315: 481-490. |
[19] | ZHI T, TAO T, LIU B, et al. High quality CVD single crystal diamonds grown on nanorods patterned diamond seed. Diam. Relat. Mater., 2021, 119: 108605. |
[20] | SOLOZHENKO V L, BUSHLYA V, ZHOU J M. Mechanical properties of ultra-hard nanocrystalline cubic boron nitride. J. Appl. Phys., 2019, 126: 075107. |
[21] |
ZHENG Q Y, LI S, LI C H, et al. High thermal conductivity in isotopically enriched cubic boron phosphide. Adv. Funct. Mater., 2018, 28(43): 1805116.
DOI URL |
[22] | SOLOZHENKO V L, BUSHLYA V. Mechanical properties of boron phosphides. J. Suprerhard Mater., 2019, 41: 84-89. |
[23] |
DING N, XU J Q, ZHANG Q, et al. Controllable carrier type in boron phosphide nanowires toward homostructural optoelectronic devices. ACS Appl. Mater. Interfaces, 2018, 10(12): 10296-10303.
DOI URL |
[24] |
MUKHANOV V A, VREL D, SOKOLOV P S, et al. Ultra-fast mechanochemical synthesis of boron phosphides, BP and B12P2. Dalton Trans., 2016, 45(25): 10122-10126.
DOI URL |
[25] |
FENG X, SHI L Y, HANG J Z, et al. Low temperature synthesis of boron phosphide nanocrystals. Mater. Lett., 2005, 59(8/9): 865-867.
DOI URL |
[26] |
KANG J S, WU H, HU Y J. Thermal properties and phonon spectral characterization of synthetic boron phosphide for high thermal conductivity applications. Nano Lett., 2017, 17(12): 7507-7514.
DOI URL |
[27] |
SUGIMOTO H, FUJII M, IMAKITA K. Size-controlled growth of cubic boron phosphide nanocrystals. RSC Adv., 2015, 5(11): 8427-8431.
DOI URL |
[28] | ZHANG X, XIA X C, YOU H, et al. Design of continuous segregated polypropylene/Al2O3 nanocomposites and impact of controlled Al2O3 distribution on thermal conductivity. Compos. Part A-Appl. S., 2020, 131: 105825. |
[29] | OUYANG Y, LI X F, DING F, et al. Simultaneously enhance thermal conductive property and mechanical properties of silicon rubber composites by introducing ultrafine Al2O3 nanospheres prepared via thermal plasma. Compos. Sci. Technol., 2020, 190: 108019. |
[30] | PAN C, KOU K C, ZHANG Y, et al. Enhanced through-plane thermal conductivity of PTFE composites with hybrid fillers of hexagonal boron nitride platelets and aluminum nitride particles. Compos. Part B-Eng., 2018, 153: 1-8. |
[31] |
GUAN S W, SU Z R, CHEN F, et al. Spherical hybrid filler BN@Al2O3 via chemical adhesive for enhancing thermal conductivity and processability of silicon rubber. J. Appl. Polym. Sci., 2021, 138(41): 51211.
DOI URL |
[32] | WANG Z D, MENG G D, WANG L L, et al. Simultaneously enhanced dielectric properties and through-plane thermal conductivity of epoxy composites with alumina and boron nitride nanosheets. Sci. Rep., 2021, 11: 2495. |
[33] | YıIDıZ G, AKKOYUN M. Thermal and electrical properties of aluminum nitride/boron nitride filled polyamide 6 hybrid polymer composites. J. Appl. Polym. Sci., 2021, 138(22): e50516. |
[34] | WEI Q G, YANG D, YU L Y, et al. Fabrication of carboxyl nitrile butadiene rubber composites with high dielectric constant and thermal conductivity using Al2O3@PCPA@GO hybrids. Compos. Sci. Technol., 2020, 199: 108344. |
[35] | YANG D, NI Y F, KONG X X, et al. Mussel-inspired modification of boron nitride for natural rubber composites with high thermal conductivity and low dielectric constant. Compos. Sci. Technol., 2019, 177: 18-25. |
[36] | REN J W, LI Q H, YAN L, et al. Enhanced thermal conductivity of epoxy composites by introducing graphene@boron nitride nanosheets hybrid nanoparticles. Mater. Design, 2020, 191: 108663. |
[37] | WANG H T, DING D L, LIU Q, et al. Highly anisotropic thermally conductive polyimide composites via the alignment of boron nitride platelets. Compos. Part B-Eng., 2019, 158: 311-318. |
[1] | CHEN Qiang, BAI Shuxin, YE Yicong. Highly Thermal Conductive Silicon Carbide Ceramics Matrix Composites for Thermal Management: a Review [J]. Journal of Inorganic Materials, 2023, 38(6): 634-646. |
[2] | ZHANG Shuo, FU Qiangang, ZHANG Pei, FEI Jie, LI Wei. Influence of High Temperature Treatment of C/C Porous Preform on Friction and Wear Behavior of C/C-SiC Composites [J]. Journal of Inorganic Materials, 2023, 38(5): 561-568. |
[3] | FU Shi, YANG Zengchao, LI Honghua, WANG Liang, LI Jiangtao. Mechanical Properties and Thermal Conductivity of Si3N4 Ceramics with Composite Sintering Additives [J]. Journal of Inorganic Materials, 2022, 37(9): 947-953. |
[4] | WANG Pengjiang, KANG Huijun, YANG Xiong, LIU Ying, CHENG Cheng, WANG Tongmin. Inhibition of Lattice Thermal Conductivity of ZrNiSn-based Half-Heusler Thermoelectric Materials by Entropy Adjustment [J]. Journal of Inorganic Materials, 2022, 37(7): 717-723. |
[5] | RUAN Jing, YANG Jinshan, YAN Jingyi, YOU Xiao, WANG Mengmeng, HU Jianbao, ZHANG Xiangyu, DING Yusheng, DONG Shaoming. Porous SiC Ceramic Matrix Composite Reinforced by SiC Nanowires with High Strength and Low Thermal Conductivity [J]. Journal of Inorganic Materials, 2022, 37(4): 459-466. |
[6] | LOU Xunuo, DENG Houquan, LI Shuang, ZHANG Qingtang, XIONG Wenjie, TANG Guodong. Thermal and Electrcial Transport Properities of Ge Doped MnTe Thermoelectrics [J]. Journal of Inorganic Materials, 2022, 37(2): 209-214. |
[7] | SHU Chaoqin, ZHU Min, ZHU Yufang. Cobalt-incorporated Chlorapatite: Preparation by Molten Salt Method, Anti-oxidation and Cytocompatibility [J]. Journal of Inorganic Materials, 2022, 37(11): 1225-1235. |
[8] | WU Aijun, ZHU Min, ZHU Yufang. Copper-incorporated Calcium Silicate Nanorods Composite Hydrogels for Tumor Therapy and Skin Wound Healing [J]. Journal of Inorganic Materials, 2022, 37(11): 1203-1216. |
[9] | WANG Weide, CHEN Huanbei, LI Shishuai, YAO Dongxu, ZUO Kaihui, ZENG Yuping. Preparation of Silicon Nitride with High Thermal Conductivity and High Flexural Strength Using YbH2-MgO as Sintering Additive [J]. Journal of Inorganic Materials, 2021, 36(9): 959-966. |
[10] | WANG Haoxuan, LIU Qiaomu, WANG Yiguang. Research Progress of High Entropy Transition Metal Carbide Ceramics [J]. Journal of Inorganic Materials, 2021, 36(4): 355-364. |
[11] | SANG Weiwei, ZHANG Hongsong, CHEN Huahui, WEN Bin, LI Xinchun. Preparation and Thermophysical Properties of (Sm0.2Gd0.2Dy0.2Y0.2Yb0.2)3TaO7 High-entropy Ceramic [J]. Journal of Inorganic Materials, 2021, 36(4): 405-410. |
[12] | MU Tinghai, XU Wentao, LING Junrong, DONG Tianwen, QIN Zixuan, ZHOU Youfu. Microstructure and Properties of ZrO2-AlN Composite Ceramics by Microwave Sintering [J]. Journal of Inorganic Materials, 2021, 36(11): 1231-1236. |
[13] | GAO Jiming, YANG Yang, LEI Ting, WANG Jin, LIU Jie, ZHANG Limin. Synthesis and Characterization of SiC@SiO2/BN/PI Composites by in-situ Polymerization [J]. Journal of Inorganic Materials, 2021, 36(1): 36-42. |
[14] | QIU Xiaoxiao,ZHOU Xiying,FU Yuntian,SUN Xiaomeng,WANG Lianjun,JIANG Wan. Influence of Ge1-xInxTe Microstructure on Thermoelectric Properties [J]. Journal of Inorganic Materials, 2020, 35(8): 916-922. |
[15] | JI Xiaojuan,YU Yueguang,LU Xiaoliang. Effects of Impurities on Properties of YSZ Thermal Barrier Coatings [J]. Journal of Inorganic Materials, 2020, 35(6): 669-674. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||