[1] Burba C M, Frech R. Vibrational spectroscopic studies of monoclinic and rhombohedral Li3V2(PO4)3. Solid Stated Ionics, 2007, 177(15): 3445-3454.[2] Fu P, Zhao Y M, Dong Y Z, et al. Synthesis of Li3V2(PO4)3 with high performance by optimized solid-state synthesis routine. J. Power Sources, 2006, 162(1): 651-657.[3] Masquelier C, Wurm C, Rodriguez-Carvajal J, et al. A powder neutron diffraction investigation of the two rhombohedral NASICON analogues: γ-Na3Fe2(PO4)3 and Li3Fe2(PO4)3. Chem. Mater., 2000, 12(2): 525-532.[4] Patoux S, Wurm C, Morcrette M, et al. A comparative structural and electrochemical study of monoclinic Li3Fe2(PO4)3 and Li3V2(PO4)3. J. Power Sources, 2003, 119-121(1): 278-284.[5] Saidi M Y, Barker J, Huang H, et al. Performance characteristics of lithium vanadium phosphate as a cathode materials for lithium-ion batteries. J. Power Sources, 2003, 119-121(1): 266-272.[6] Barker J, Saidi M Y, Swoyer J L. A carbothermal reduction method for preparation of electroactive materials for lithium ion applications. J. Electrochem. Soc., 2003, 150(6): A684-A688.[7] Rui X H, Ding N, Liu J, et al. Analysis of the chemical diffusion coefficient of lithium ions in Li3Fe2(PO4)3 cathode material. Electrochim. Acta, 2010, 55(7): 2384-2390.[8] 武俊萍. 锂离子电池正极材料Li3V2(PO4)3的合成及性能研究. 哈尔滨: 哈尔滨工业大学硕士论文, 2007.[9] Fu P, Zhao Y M, Dong Y Z, et al. Low temperature solid-state synthesis routine and mechanism for Li3V2(PO4)3 using LiF as lithium precursor. Electrochim. Acta, 2006, 52(3): 1003-1008.[10] Barker J, Saidi M Y, Swoyer J L. Lithium iron (Ⅱ) phospho-olivines prepared by a novel carbothermal reduction method. Electrochem. Solid-State Lett., 2003, 6(3): A53-A55.[11] Li Y Z, Liu X, Yan J. Study on synthesis routes and their influences on chemical and electrochemical performances of Li3V2(PO4)3/ carbon. Electrochim. Acta, 2007, 53(2): 474-479.[12] Jiang T, Wang C Z, Chen G, et al. Effects of synthetic route on the structural, physical and electrochemical properties of Li3V2(PO4)3 cathode materials. Solid Stated Ionics, 2009, 180(9/10): 708-714.[13] Chen Z Y, Dai C S, Wu G, et al. High performance Li3V2(PO4)3/C composite cathode material for lithium ion batteries studied in pilot scale test. Electrochim. Acta, 2010, 55(28): 8595-8599.[14] Rui X H, Li C, Chen C H. Synthesis and characterization of carbon-coated Li3V2(PO4)3 cathode materials with different carbon sources. Electrochim. Acta, 2009, 54(12): 3374-3380.[15] Qiao Y Q, Wang X L, Zhou Y, et al. Electrochemical performance of carbon-coated Li3V2(PO4)3 cathode materials derived from polystyrene-based carbon-thermal reduction synthesis. Electrochim. Acta, 2010, 56(1): 510-516.[16] Qiao Y Q, Wang X L, Xiang J Y, Z, et al. Electrochemical performance of Li3V2(PO4)3/C cathode materials using stearic acid as a carbon source. Electrochim. Acta, 2011, 56(5): 2269-2275.[17] Rui X H, Yesibolati N, Chen C H. Li3V2(PO4)3/C composite as an intercalation-type anode material for lithium-ion batteries. J. Power Sources, 2011, 196(4): 2279-2282.[18] Qiao Y Q, Tu J P, Xiang J Y, et al. Effects of synthetic route on structure and electrochemical performance of Li3V2(PO4)3/C cathode materials. Electrochim. Acta, 2011, 56(11): 4139-4145.[19] Huang J S, Yang L, Liu K Y. One-pot syntheses of Li3V2(PO4)3/C cathode material for lithium ion batteries via ascorbic acid reduction approach. Mater. Chem. Phys., 2011, 128(3): 470-474.[20] Zhong S K, Yin Z L, Wang Z X. Synthesis and characterization of novel cathode material Li3V2(PO4)3 by carbon thermal reduction method. Trans. Nonferrous Met. Soc. China, 2006, 16(2): s708-s710.[21] YING Jie-Rong, GAO Jian, JIANG Chang-Yin, et al. Preparation and characterization of Li3V2(PO4)3 cathod Material for Lithium ion Batteries. Journal of Inorganic Materials, 2006, 21(5): 1097-1102.[22] 刘素琴, 唐联兴, 黄可龙, 等. 新型锂离子电池正极材料Li3V2(PO4)3的合成及其性能. 中国有色金属学报, 2005, 15(8): 1294-1299.[23] 刘素琴, 唐联兴, 黄可龙. 碳热还原法合成正极材料Li3V2(PO4)3及其性能. 电源技术, 2006, 30(6): 473-476.[24] Zheng J C, Li X H, Wang Z X, et al. Li3V2(PO4)3 cathode material synthesized by chemical reduction and lithiation method. J. Power Sources, 2009, 189(1): 476-479.[25] 肖政伟. 以不同原材料制备锂离子电池复合正极材料LiFePO4/C的研究. 长沙: 中南大学博士论文, 2008.[26] Fu L J, Liu H, Li C, et al. Electrode materials for lithium secondary batteries prepared by Sol-Gel methods. Prog. Mater. Sci., 2005, 50(7): 881-928.[27] Hsu K F, Tsay S Y, Hwang B J. Synthesis and characterization of nano-sized LiFePO4 cathode materials prepared by a citric acid-based Sol-Gel route. J. Mater. Chem., 2004, 14(17): 2690-2695.[28] Yang J, Xu J J. Nonaqueous Sol-Gel synthesis of high-performance LiFePO4. Electrochem. Solid-State Lett., 2004, 7(12): A515-A518.[29] Tang A P, Wang X Y, Liu Z M. Electrochemical behavior of Li3V2(PO4)3/C composite cathode material for lithium-ion batteries. Mater. Lett., 2008, 62(10/11): 1646-1648.[30] Fu P, Zhao Y M, An X N, et al. Structure and electrochemical properties of nanocarbon-coated Li3V2(PO4)3 prepared by Sol-Gel method. Electrochim. Acta, 2007, 52(16): 5281-5285.[31] Zhao Q, Li Y H, Zhong S K, et al. Syntheis and electrochemical performance of Li3V2(PO4)3 by optimized Sol-Gel synthesis routine. Trans. Nonferrous Met. Soc. China, 2010, 20(8): 1545-1549.[32] Rui X H, Li C, Liu J, et al. The Li3V2(PO4)3/C composites with high-rate capability prepared by a maltose-based Sol-Gel route. Electrochim. Acta, 2010, 55(22): 6761-6767.[33] Jiang T, Pan W C, Wang J, et al. Carbon coated Li3V2(PO4)3 cathode material prepared by PVA assisted Sol-Gel method. Electrochim. Acta, 2010, 55(12): 3864-3869.[34] Li Y Z, Zhou Z, Gao X P, et al. A promising Sol-Gel route based on citric acid to synthesize Li3V2(PO4)3/carbon composite material for lithium ion batteries. Electrochim. Acta, 2007, 52(15): 4922-4926.[35] Chen Q Q, Wang J M, Tang Z, et al. Electrochemical performance of the carbon coated Li3V2(PO4)3 cathode material synthesized by Sol-Gel method. Electrochim. Acta, 2007, 52(16): 5251-5257.[36] Ren M M, Zhou Z, Gao X P, et al. Core-shell Li3V2(PO4)3@C composites as cathode materials for lithium-ion batteries. J. Phys. Chem. C, 2008, 112(14): 5689-5693.[37] 牟群英, 李贤军. 微波加热技术的应用与研究进展. 物理, 2004, 33(6): 438-442.[38] 任慢慢, 李宇展, 周 震, 等. 微波法合成正极材料Li3V2(PO4)3. 电池, 2006, 36(1): 13-14.[39] Yang G, Liu H D, Ji H M, et al. Temperature-controlled microwave solid-state synthesis of Li3V2(PO4)3 as cathode materials for lithium battery. J. Power Sources, 2010, 195(16): 5374-5378.[40] Liu H W, Cheng C X, Huang X T, et al. Hydrothermal synthesis and rate capacity studies of Li3V2(PO4)3 nanorods as cathode material for lithium ion batteries. Electrochim. Acta, 2010, 55(28): 8461-8465.[41] 马铖杰, 梁怡婧, 刘松博. 水热法合成聚苯胺掺杂的锂离子电池正极材料磷酸钒锂. 河南化工, 2011, 28(6): 3-5.[42] Padhi A K, Nanjiundaswamy K S, Masquelier C. Mapping of transition metal redox energies in phosphates with NASICON structure by lithium intercalation. J. Electrochem. Soc., 1997, 144(8): 2581-2586.[43] Wang J W, Liu J, Yang G L, et al. Electrochemical performance of Li3V2(PO4)3/C cathode material using a novel carbon source. Electrochim. Acta, 2009, 54(28): 6451-6454.[44] Barker J, Gover R K B, Burns P, et al. The effect of Al substitution on the electrochemical insertion properties of the lithium vanadium phosphate, Li3V2(PO4)3. J. Electrochem. Soc., 2007, 154(4): A307-A313.[45] Ren M M, Zhou Z Li |