Journal of Inorganic Materials ›› 2011, Vol. 26 ›› Issue (6): 561-570.DOI: 10.3724/SP.J.1077.2011.00561
• Review • Next Articles
YUAN Xiao-Ya
Received:
2010-09-27
Revised:
2010-12-02
Published:
2011-06-20
Online:
2011-06-07
Supported by:
Municipal Science Foundation Project of CQ CSTC (2007BB4442) and of CQEC (KJ070402); Open-ended Fund of Hi-tech Lab for Mountain Road Construction and Maintenance, CQTJU (CQMRCM-10-5)
CLC Number:
YUAN Xiao-Ya. Progress in Preparation of Graphene[J]. Journal of Inorganic Materials, 2011, 26(6): 561-570.
Add to citation manager EndNote|Ris|BibTeX
[1] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666-669.[2] Geim A K, Novoselov K S. The rise of graphene. Nat. Mater., 2007, 6(3): 183-191.[3] Geim A K. Graphene: status and prospects. Science, 2009, 324(5934): 1530-1534.[4] Wu J S, Pisula W, Mullen K. Graphenes as potential material for electronics. Chem. Rev., 2007, 107(3): 718-747.[5] Rao C N R, Sood A k, Voggu R, et al. Some novel attributes of graphene. J. Phys. Chem. Lett., 2010, 1(2): 572-580.[6] Allen M J, Tung V C, Kaner R B. Honeycomb carbon: a review of Graphene. Chem. Rev., 2010, 110(1): 132-145.[7] Zhang Y, Tan J W, Stormer H L, et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature, 2005, 438: 201-204.[8] Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun., 2008, 146(9/10): 351-355.[9] Balandin A A, Ghosh S, Bao W Z, et al. Superior thermal conductivity of single-layer graphene. Nano Lett., 2008, 8(3): 902-907.[10] Schadler L S, Giannris S C, Ajayan P M. Load transfer in carbon nanotube epoxy composites. Appl. Phys. Lett., 1998, 73(26): 3842-3847.[11] Chae H K, Siberio-Pérez D Y, Kim J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals. Nature, 2004, 427: 523-527.[12] Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887): 385-388.[13] Van den Brink J. Graphene-from strength to strength. Nat. Nanotechnol., 2007, 2(4): 199-201.[14] Weitz R T, Yacoby A. Graphene rests easy. Nat. Nanotechnol., 2010, 5(10): 699-700.[15] Kim J, Kim F, Huang J. Seeing graphene-based sheets. Materials today, 2010, 13(3): 28-38.[16] Park R, Ruoff R S. Chemical methods for the production of graphenes. Nat. Nanotechnol., 2009, 4(4): 217-224.[17] 徐秀娟, 秦金贵, 李 振. 石墨烯研究进展. 化学进展, 2009, 21(12): 2559-2567.[18] 黄 毅, 陈永胜. 石墨烯的功能化及其相关应用. 中国科学B辑, 2009, 39(9): 887-896.[19] 李 旭, 赵卫峰, 陈国华. 石墨烯的制备与表征研究. 材料导报, 2008, 22(8): 48-52.[20] Müllen M, Kübel C, Müllen K. Giant polycyclic aromatic hydrocarbons. Chem. Eur. J., 1998, 4(11): 2099-2109.[21] Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphene- based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 2007, 45(7): 1558-1565.[22] Hernandez Y, Nicolosi V, Lotya M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol., 2008, 3(9): 563-568.[23] Khan U, O'Neill A, Lotya M, et al. High-concentration solvent exfoliation of graphene. Small, 2010, 6(7): 864-871.[24] Hamilton C E,-Lomeda J R, Sun Z, et al. High-yield organic dispersions of unfunctionalized graphene. Nano Lett., 2009, 9(10): 3460-3462.[25] Biswas S, Drzal L T. A novel approach to create a highly ordered monolayer film of graphene nanosheets at the liquid-liquid interface. Nano Lett., 2009, 9(1): 167-172.[26] Qian W, Hao R, Hou Y, et al. Solvothermal-assisted exfoliation process to produce graphene with high yield and high quality. Nano Res., 2009, 2: 706-712.[27] Lotya M, Hernandez Y, King P J, et al. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc., 2009, 131(10): 3611-3620.[28] De S, King P J, Lotya M, et al. Flexible, transparent, conducting films of randomly stacked graphene from surfactant-stabilized, oxide-free graphene dispersions. Small, 2010, 6(3): 458-464.[29] Englert J M, R-hrl J, Schmidt C D, et al. Soluble graphene: generation of aqueous graphene solutions aided by a perylenebisimide- based bolaamphiphile. Adv. Mater., 2009, 21(42): 4265-4269.[30] Li X, Zhang G, Bai X, et al. Highly conducting graphene sheets and Langmuir–Blodgett films. Nat. Nanotechnol., 2008, 3(9): 538-542.[31] Janowska I, Chizari K, Ersen O, et al. Microwave synthesis of large few-layer graphene sheets in aqueous solution of ammonia. Nano Res., 2010, 3(2): 126-137.[32] Pu N W, Wang C, Sung Y, et al. Production of few-layer graphene by supercritical CO2 exfoliation of graphite. Mater. Lett., 2009, 63(23): 1987-1989.[33] Knieke C, Berger A, Voigt M, et al. Scalable production of graphene sheets by mechanical delamination. Carbon, 2010, 48(11): 3196-3204.[34] Srivastava S K, Shukla A K, Vankar V D, et al. Growth, structure and field emission characteristics of petal like carbon nano-structured thin films.--Thin Solid Films, 2005, 492(1/2): 124-130.[35] Zhu M, Wang J, Outlaw R A, et al. Synthesis of carbon nanosheets and carbon nanotubes by radio frequency plasma enhanced chemical vapor deposition. Diam. Relat. Mater., 2007, 16(2): 196-201.[36] Wang J, Zhu M, Outlaw R A, et al . Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition.-Carbon, 2004, 42(14): 2867-2872.[37] Berger C, Song Z, Li X, et al. Electronic confinement and coherence in patterned epitaxial graphene. Science, 2006, 312(5777): 1191-1196.[38] Berger C, Song Z, Li T, et al. Ultrathin epitaxial graphite:2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B, 2004, 108(52): 19912-19916.[39] Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009, 457(7230): 706-710.[40] Lee Y, Bae S, Jang H, et al. Wafer-scale synthesis and transfer of graphene films. Nano Lett., 2010, 10(2): 490-493.[41] Reina A, Jia X, Ho J, et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett., 2009, 9(1): 30-35.[42] Faugeras C, Faugeras B, Orlita M, et al. Thermal conductivity of graphene in corbino membrane geometry. ACS Nano, 2010, 4(4): 1889-1892.[43] Sutter P W, Flege J I, Sutter E A. Epitaxial graphene on ruthenium. Nat. Mater., 2008, 7(5): 406-411.[44] 刘忠良. 碳化硅薄膜的外延生长、结构表征与石墨烯的制备. 合肥: 中国科学技术大学博士论文, 2009.[45] Compton O C, Nguyen S T. Graphene oxide, highly reduced graphene oxide and graphene: versatile building blocks for carbon- based materials. Small, 2010, 6(6): 711-723.[46] Dreyer D R, Park S, Bielawski C W, et al. The chemistry of graphene oxide. Chem. Soc. Rev., 2010, 39(1): 228-240.[47] Tsuyoshi N, Yoshiaki M. Formation process and structure of graphite oxide.-Carbon, 1994, 32 (3): 469-475.[48] Staudenmaier L. Verfahren zur darstellung der graphits ure. Ber. Dt. Sch. Chem. Ges., 1898, 31(2): 1481-1487.[49] Brodie B C. Sur le poids atomique du graphite. Ann. Chim. Phys., 1860, 59: 466-472.[50] Hummers W, Offeman R. Preparation of graphitic oxide. J. Am. Chem. Soc., 1958, 80(6): 1339.[51] Chattopadhyay J, Mukherjee A, Billups W E, et al. Graphite epoxide. J. Am. Chem. Soc., 2008, 130(16): 5414-5415.[52] Wissler M. Graphite and carbon powders for electrochemical applications. J. Power Sources, 2006, 156(2): 142-150.[53] Lerf A, He H, Forster M, et al. Structure of graphite oxide revisited. J. Phys. Chem. B, 1998, 102(23): 4477-4482.[54] Szabó T, Berkesi O, Forgó P, et al. Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem. Mater., 2006, 18(11): 2740-2749.[55] Yang D X, Velamakanni A, Bozoklu G, et al. Chemical analysis of graphene oxide after heat and chemical treatments by X-ray photoelectron and micro-Raman sp |
[1] | WEI Xiangxia, ZHANG Xiaofei, XU Kailong, CHEN Zhangwei. Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials [J]. Journal of Inorganic Materials, 2024, 39(9): 965-978. |
[2] | YANG Xin, HAN Chunqiu, CAO Yuehan, HE Zhen, ZHOU Ying. Recent Advances in Electrocatalytic Nitrate Reduction to Ammonia Using Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(9): 979-991. |
[3] | LIU Pengdong, WANG Zhen, LIU Yongfeng, WEN Guangwu. Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(9): 992-1004. |
[4] | HUANG Jie, WANG Liuying, WANG Bin, LIU Gu, WANG Weichao, GE Chaoqun. Research Progress on Modulation of Electromagnetic Performance through Micro-nanostructure Design [J]. Journal of Inorganic Materials, 2024, 39(8): 853-870. |
[5] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
[6] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[7] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[8] | WU Xiaochen, ZHENG Ruixiao, LI Lu, MA Haolin, ZHAO Peihang, MA Chaoli. Research Progress on In-situ Monitoring of Damage Behavior of SiCf/SiC Ceramic Matrix Composites at High Temperature Environments [J]. Journal of Inorganic Materials, 2024, 39(6): 609-622. |
[9] | ZHAO Rida, TANG Sufang. Research Progress of Ceramic Matrix Composites Prepared by Improved Reactive Melt Infiltration through Ceramization of Porous Carbon Matrix [J]. Journal of Inorganic Materials, 2024, 39(6): 623-633. |
[10] | FANG Guangwu, XIE Haoyuan, ZHANG Huajun, GAO Xiguang, SONG Yingdong. Progress of Damage Coupling Mechanism and Integrated Design Method for CMC-EBC [J]. Journal of Inorganic Materials, 2024, 39(6): 647-661. |
[11] | ZHANG Xinghong, WANG Yiming, CHENG Yuan, DONG Shun, HU Ping. Research Progress on Ultra-high Temperature Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(6): 571-590. |
[12] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[13] | LI Honglan, ZHANG Junmiao, SONG Erhong, YANG Xinglin. Mo/S Co-doped Graphene for Ammonia Synthesis: a Density Functional Theory Study [J]. Journal of Inorganic Materials, 2024, 39(5): 561-568. |
[14] | LI Zongxiao, HU Lingxiang, WANG Jingrui, ZHUGE Fei. Oxide Neuron Devices and Their Applications in Artificial Neural Networks [J]. Journal of Inorganic Materials, 2024, 39(4): 345-358. |
[15] | SUN Chuan, HE Pengfei, HU Zhenfeng, WANG Rong, XING Yue, ZHANG Zhibin, LI Jinglong, WAN Chunlei, LIANG Xiubing. SiC-based Ceramic Materials Incorporating GNPs Array: Preparation and Mechanical Characterization [J]. Journal of Inorganic Materials, 2024, 39(3): 267-273. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||