Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (5): 561-568.DOI: 10.15541/jim20230433
Special Issue: 【材料计算】计算材料(202409)
• RESEARCH LETTER • Previous Articles
LI Honglan1(), ZHANG Junmiao1, SONG Erhong2(
), YANG Xinglin1(
)
Received:
2023-09-21
Revised:
2023-11-22
Published:
2024-05-20
Online:
2024-01-31
Contact:
SONG Erhong, associate professor. E-mail: ehsong@mail.sic.ac.cn;About author:
LI Honglan (1983-), female, PhD candidate. E-mail: openfoam@just.edu.cn
Supported by:
CLC Number:
LI Honglan, ZHANG Junmiao, SONG Erhong, YANG Xinglin. Mo/S Co-doped Graphene for Ammonia Synthesis: a Density Functional Theory Study[J]. Journal of Inorganic Materials, 2024, 39(5): 561-568.
Fig. 1 Structure, optimized lengths, binding energy and partial density of states (PDOS)of TMX (a) Atomic structure diagram of TMX doped graphene; (b) Optimized lengths, lTMB, of the TM-X bonds; (c) Binding energy, Eb(TMX), of TMX doped graphene; (d) PDOS between the d band of Mo and the p band of X for MoX doped graphene; Colorful figures are available on website
Fig. 2 Adsorption behavior of the nitrogen molecule on graphene (a) Schematic diagram of N2 adsorption structures; (b) Difference in the adsorption free energy of N2 and H, ΔΔGads= Gads(*N2)-Gads(*H), as a function of Gads(*N2); (c) PDOS between the d band of Mo and the p band of N2 for MoB, MoP, and MoS doped graphene; (d) Charge, QN2, and bond length, lN2, of the N2 adsorbate; Colorful figures are available on website
Fig. 3 Free energy and plotting UL(NRR) vs UL(HER) of the catalysts (a, b) Free energy profiles for NRR of MoS doped graphene via (a) distal pathway and (b) alternating pathway; (c) Free energy profiles for HER of WS, WP, MoS, MoP, and NbB doped graphene; (d) Comparison between limiting potential of NRR and reduction potential of HER; Colorful figures are available on website
Fig. 4 Variation of Mulliken charge and energy of the catalysts (a-c) Mulliken charge variation of (a) MoB, (b) MoP, and (c) MoS via the distal pathway; (d) Variation of temperature and energy of MoS during the AIMD simulation
QTM | QX | ɛd | |||||||
---|---|---|---|---|---|---|---|---|---|
B | P | S | B | P | S | B | P | S | |
Fe | -0.133 | -0.015 | 0.061 | 0.172 | 0.427 | -0.100 | -1.007 | -1.330 | -1.383 |
Nb | 0.566 | 0.486 | 0.628 | 0.123 | 0.437 | -0.147 | -1.489 | -2.475 | -2.157 |
Mo | 0.234 | 0.147 | 0.267 | 0.188 | 0.479 | -0.107 | -1.556 | -1.930 | -1.820 |
Ru | -0.187 | -0.207 | -0.032 | 0.315 | 0.721 | -0.046 | -1.632 | -2.078 | -1.787 |
W | 0.247 | 0.137 | 0.265 | 0.189 | 0.482 | -0.108 | -1.669 | -2.135 | -1.915 |
Table S1 Mulliken charge Q (in e) of TM and X and the d band center ɛd (in eV) of TM in TMX-doped graphene
QTM | QX | ɛd | |||||||
---|---|---|---|---|---|---|---|---|---|
B | P | S | B | P | S | B | P | S | |
Fe | -0.133 | -0.015 | 0.061 | 0.172 | 0.427 | -0.100 | -1.007 | -1.330 | -1.383 |
Nb | 0.566 | 0.486 | 0.628 | 0.123 | 0.437 | -0.147 | -1.489 | -2.475 | -2.157 |
Mo | 0.234 | 0.147 | 0.267 | 0.188 | 0.479 | -0.107 | -1.556 | -1.930 | -1.820 |
Ru | -0.187 | -0.207 | -0.032 | 0.315 | 0.721 | -0.046 | -1.632 | -2.078 | -1.787 |
W | 0.247 | 0.137 | 0.265 | 0.189 | 0.482 | -0.108 | -1.669 | -2.135 | -1.915 |
B | P | S | |||||||
---|---|---|---|---|---|---|---|---|---|
Eb | Eint | Edef | Eb | Eint | Edef | Eb | Eint | Edef | |
Fe | -6.46 | -8.69 | 2.23 | -6.26 | -7.49 | 1.23 | -5.35 | -6.58 | 1.23 |
Nb | -5.19 | -8.06 | 2.86 | -5.69 | -8.42 | 2.73 | -4.44 | -7.36 | 2.92 |
Mo | -6.71 | -9.83 | 3.12 | -6.95 | -9.95 | 2.99 | -5.80 | -8.89 | 3.09 |
Ru | -7.99 | -10.09 | 2.09 | -7.76 | -9.40 | 1.64 | -6.36 | -7.94 | 1.58 |
W | -5.67 | -9.04 | 3.37 | -5.71 | -8.96 | 3.26 | -4.52 | -7.89 | 3.37 |
Table S2 Binding energy Eb(TMX) (in eV), interaction energy Eint (in eV) and deformation energy Edef (in eV)
B | P | S | |||||||
---|---|---|---|---|---|---|---|---|---|
Eb | Eint | Edef | Eb | Eint | Edef | Eb | Eint | Edef | |
Fe | -6.46 | -8.69 | 2.23 | -6.26 | -7.49 | 1.23 | -5.35 | -6.58 | 1.23 |
Nb | -5.19 | -8.06 | 2.86 | -5.69 | -8.42 | 2.73 | -4.44 | -7.36 | 2.92 |
Mo | -6.71 | -9.83 | 3.12 | -6.95 | -9.95 | 2.99 | -5.80 | -8.89 | 3.09 |
Ru | -7.99 | -10.09 | 2.09 | -7.76 | -9.40 | 1.64 | -6.36 | -7.94 | 1.58 |
W | -5.67 | -9.04 | 3.37 | -5.71 | -8.96 | 3.26 | -4.52 | -7.89 | 3.37 |
System | Pathway | Gads(N2) | ΔG1 | ΔG2 | ΔG3 | ΔG4 | ΔG5 | ΔG6 | Gads(H) | UL(NRR) | UL(HER) |
---|---|---|---|---|---|---|---|---|---|---|---|
FeB | Distal | -0.45 | 0.27 | -0.36 | 1.11 | -2.22 | -0.74 | 0.46 | -0.38 | 0.81 | 0.38 |
Alternating | -0.45 | 0.27 | 0.81 | -1.38 | 0.58 | -2.23 | 0.46 | ||||
FeP | Distal | -0.57 | 0.98 | -0.35 | 0.60 | -0.84 | -1.28 | -0.88 | 0.03 | 0.98 | 0.03 |
Alternating | -0.57 | 0.98 | 0.15 | 2.42 | -0.32 | -4.12 | -0.88 | ||||
FeS | Distal | -0.46 | 0.82 | -0.25 | 0.67 | -0.91 | -1.36 | -0.76 | -0.06 | 0.82 | 0.06 |
Alternating | -0.46 | 0.82 | 0.17 | -0.52 | -0.35 | -1.16 | -0.76 | ||||
NbB | Distal | -0.15 | -1.99 | -0.15 | 0.54 | -1.63 | -1.21 | -0.53 | 0.15 | 0.54 | 0.15 |
Alternating | -0.15 | -1.99 | -0.07 | -0.59 | -0.44 | -1.36 | -0.53 | ||||
NbP | Distal | -0.20 | -2.00 | 2.41 | 0.57 | -1.62 | -0.81 | -0.54 | 0.15 | 2.41 | 0.15 |
Alternating | -0.20 | -2.00 | 3.02 | -0.75 | -0.11 | -1.63 | -0.54 | ||||
NbS | Distal | -0.31 | 0.74 | -0.50 | 0.39 | -1.47 | -0.78 | -0.42 | -0.16 | 0.74 | 0.16 |
Alternating | -0.31 | 0.74 | 0.16 | -0.69 | -0.08 | -1.74 | -0.42 | ||||
MoB | Distal | -0.69 | 0.85 | -0.39 | 0.01 | -1.01 | -0.80 | -0.60 | -0.29 | 0.85 | 0.29 |
Alternating | -0.69 | 0.85 | -0.04 | -0.56 | -0.31 | -1.28 | -0.60 | ||||
MoP | Distal | -0.67 | 0.49 | -0.24 | -0.41 | -0.58 | -0.65 | -0.45 | -0.42 | 0.49 | 0.42 |
Alternating | -0.67 | 0.49 | 0.35 | -0.79 | 0.03 | -1.46 | -0.45 | ||||
MoS | Distal | -0.69 | 0.47 | -0.22 | -0.54 | -0.42 | -0.67 | -0.33 | -0.51 | 0.47 | 0.51 |
Alternating | -0.69 | 0.47 | 0.51 | -0.90 | 0.14 | -1.59 | -0.33 | ||||
RuB | Distal | -0.27 | 0.76 | 0.20 | -0.47 | 0.14 | -1.22 | -1.00 | 0.14 | 0.76 | 0.14 |
Alternating | -0.27 | 0.76 | 0.52 | -0.63 | -0.37 | -0.88 | -1.00 | ||||
RuP | Distal | -0.34 | 1.26 | -0.09 | 0.05 | -0.53 | -1.33 | -0.92 | 0.43 | 1.26 | 0.43 |
Alternating | -0.34 | 1.26 | 0.02 | -0.19 | -0.76 | -0.97 | -0.92 | ||||
RuS | Distal | -0.58 | 1.38 | -0.55 | 0.32 | -0.48 | -1.36 | -0.99 | -0.23 | 1.38 | 0.23 |
Alternating | -0.58 | 1.38 | -0.24 | -0.20 | -0.70 | -0.92 | -0.99 | ||||
WB | Distal | -0.64 | 0.66 | -0.49 | -0.09 | -1.06 | -0.71 | -0.25 | -0.56 | 0.66 | 0.56 |
Alternating | -0.64 | 0.66 | 0.07 | -0.70 | 0.12 | -1.84 | -0.25 | ||||
WP | Distal | -0.79 | 0.32 | -0.45 | -0.35 | -0.80 | -0.45 | -0.10 | -0.84 | 0.32 | 0.84 |
Alternating | -0.79 | 0.32 | 0.46 | -0.84 | 0.34 | -2.01 | -0.10 | ||||
WS | Distal | -0.78 | 0.22 | -0.33 | -0.59 | -0.62 | -0.45 | 0.11 | -0.95 | 0.22 | 0.95 |
Alternating | -0.78 | 0.22 | 0.77 | -1.07 | 0.47 | -2.15 | 0.11 |
Table S3 Free energy changes of protonation steps ΔGi (i = 1,2, …, 6). Gads(N2) and Gads(H) are the free energy (in eV) of nitrogen and hydrogen adsorption, respectively. UL(NRR) and UL(HER) are the limiting potentials (in V) of the nitrogen reduction reaction (NRR) and hydrogen evolution reaction (HER), respectively
System | Pathway | Gads(N2) | ΔG1 | ΔG2 | ΔG3 | ΔG4 | ΔG5 | ΔG6 | Gads(H) | UL(NRR) | UL(HER) |
---|---|---|---|---|---|---|---|---|---|---|---|
FeB | Distal | -0.45 | 0.27 | -0.36 | 1.11 | -2.22 | -0.74 | 0.46 | -0.38 | 0.81 | 0.38 |
Alternating | -0.45 | 0.27 | 0.81 | -1.38 | 0.58 | -2.23 | 0.46 | ||||
FeP | Distal | -0.57 | 0.98 | -0.35 | 0.60 | -0.84 | -1.28 | -0.88 | 0.03 | 0.98 | 0.03 |
Alternating | -0.57 | 0.98 | 0.15 | 2.42 | -0.32 | -4.12 | -0.88 | ||||
FeS | Distal | -0.46 | 0.82 | -0.25 | 0.67 | -0.91 | -1.36 | -0.76 | -0.06 | 0.82 | 0.06 |
Alternating | -0.46 | 0.82 | 0.17 | -0.52 | -0.35 | -1.16 | -0.76 | ||||
NbB | Distal | -0.15 | -1.99 | -0.15 | 0.54 | -1.63 | -1.21 | -0.53 | 0.15 | 0.54 | 0.15 |
Alternating | -0.15 | -1.99 | -0.07 | -0.59 | -0.44 | -1.36 | -0.53 | ||||
NbP | Distal | -0.20 | -2.00 | 2.41 | 0.57 | -1.62 | -0.81 | -0.54 | 0.15 | 2.41 | 0.15 |
Alternating | -0.20 | -2.00 | 3.02 | -0.75 | -0.11 | -1.63 | -0.54 | ||||
NbS | Distal | -0.31 | 0.74 | -0.50 | 0.39 | -1.47 | -0.78 | -0.42 | -0.16 | 0.74 | 0.16 |
Alternating | -0.31 | 0.74 | 0.16 | -0.69 | -0.08 | -1.74 | -0.42 | ||||
MoB | Distal | -0.69 | 0.85 | -0.39 | 0.01 | -1.01 | -0.80 | -0.60 | -0.29 | 0.85 | 0.29 |
Alternating | -0.69 | 0.85 | -0.04 | -0.56 | -0.31 | -1.28 | -0.60 | ||||
MoP | Distal | -0.67 | 0.49 | -0.24 | -0.41 | -0.58 | -0.65 | -0.45 | -0.42 | 0.49 | 0.42 |
Alternating | -0.67 | 0.49 | 0.35 | -0.79 | 0.03 | -1.46 | -0.45 | ||||
MoS | Distal | -0.69 | 0.47 | -0.22 | -0.54 | -0.42 | -0.67 | -0.33 | -0.51 | 0.47 | 0.51 |
Alternating | -0.69 | 0.47 | 0.51 | -0.90 | 0.14 | -1.59 | -0.33 | ||||
RuB | Distal | -0.27 | 0.76 | 0.20 | -0.47 | 0.14 | -1.22 | -1.00 | 0.14 | 0.76 | 0.14 |
Alternating | -0.27 | 0.76 | 0.52 | -0.63 | -0.37 | -0.88 | -1.00 | ||||
RuP | Distal | -0.34 | 1.26 | -0.09 | 0.05 | -0.53 | -1.33 | -0.92 | 0.43 | 1.26 | 0.43 |
Alternating | -0.34 | 1.26 | 0.02 | -0.19 | -0.76 | -0.97 | -0.92 | ||||
RuS | Distal | -0.58 | 1.38 | -0.55 | 0.32 | -0.48 | -1.36 | -0.99 | -0.23 | 1.38 | 0.23 |
Alternating | -0.58 | 1.38 | -0.24 | -0.20 | -0.70 | -0.92 | -0.99 | ||||
WB | Distal | -0.64 | 0.66 | -0.49 | -0.09 | -1.06 | -0.71 | -0.25 | -0.56 | 0.66 | 0.56 |
Alternating | -0.64 | 0.66 | 0.07 | -0.70 | 0.12 | -1.84 | -0.25 | ||||
WP | Distal | -0.79 | 0.32 | -0.45 | -0.35 | -0.80 | -0.45 | -0.10 | -0.84 | 0.32 | 0.84 |
Alternating | -0.79 | 0.32 | 0.46 | -0.84 | 0.34 | -2.01 | -0.10 | ||||
WS | Distal | -0.78 | 0.22 | -0.33 | -0.59 | -0.62 | -0.45 | 0.11 | -0.95 | 0.22 | 0.95 |
Alternating | -0.78 | 0.22 | 0.77 | -1.07 | 0.47 | -2.15 | 0.11 |
Fig. S2 Reaction coordinate of N2 splitting catalyzed by MoP doped graphene Right up: structure of initial state (IS); Right middle: structure of transition state (TS); Right down: structure of final state (FS)
[1] |
ROSCA V, DUCA M, DE GROOT M T, et al. Nitrogen cycle electrocatalysis. Chemical Reviews, 2009, 109(6): 2209.
DOI PMID |
[2] | ZHAO S L, LU X Y, WANG L Z, et al. Carbon-based metal-free catalysts for electrocatalytic reduction of nitrogen for synthesis of ammonia at ambient conditions. Advanced Materials, 2019, 31(13): 1805369. |
[3] | ZHANG L, DING L, CHEN G, et al. Ammonia synthesis under ambient conditions: selective electroreduction of dinitrogen to ammonia on black phosphorus nanosheets. Angewandte Chemie International Edition, 2019, 58(9): 2612. |
[4] |
GUO W, ZHANG K, LIANG Z, et al. Electrochemical nitrogen fixation and utilization: theories, advanced catalyst materials and system design. Chemical Society Reviews, 2019, 48(24): 5658.
DOI PMID |
[5] | HUANG L S, GU X L, ZHENG G F. Tuning active sites of MXene for efficient electrocatalytic N2 fixation. Chem, 2019, 5(1): 15. |
[6] | LING C Y, ZHANG Y H, QIANG L, et al. New mechanism for N2 reduction: the essential role of surface hydrogenation. Journal of the American Chemical Society, 2019, 141(45): 18264. |
[7] | JIAO F, XU B. Electrochemical ammonia synthesis and ammonia fuel cells. Advanced Materials, 2019, 31(31): 1805173. |
[8] |
KITANO M, INOUE Y, YAMAZAKI Y, et al. Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. Nature Chemistry, 2012, 4(11): 934.
DOI PMID |
[9] | LI J, CHEN S, QUAN F. Accelerated dinitrogen electroreduction to ammonia via interfacial polarization triggered by single-atom protrusions. Chem, 2020, 6(4): 885. |
[10] | XI J, JUNG H S, XU Y, et al. Synthesis strategies, catalytic applications, and performance regulation of single-atom catalysts. Advanced Functional Materials, 2021, 31(12): 2008318. |
[11] | SHREYA M, YANG X X, SHAN W T, et al. Atomically dispersed single Ni site catalysts for nitrogen reduction toward electrochemical ammonia synthesis using N2 and H2O. Small Methods, 2020, 4(6): 1900821. |
[12] | ZHAO W H, CHEN L L, ZHANG W H, et al. Single Mo1(W1, Re1) atoms anchored in pyrrolic-N3 doped graphene as efficient electrocatalysts for the nitrogen reduction reaction. Journal of Materials Chemistry A, 2021, 9(10): 6547. |
[13] | YANG Y, LIU J, WEI Z, et al. Transition metal-dinitrogen complex embedded graphene for nitrogen reduction reaction. ChemCatChem, 2019, 11(12): 2821. |
[14] | CHOI C, BACK S, KIM. N Y, et al. Suppression of hydrogen evolution reaction in electrochemical N2 reduction using single-atom catalysts: a computational guideline. ACS Catalysis, 2018, 8(8): 7517. |
[15] | WU J, YANG L, LIU X, et al. ZrN6-doped graphene for ammonia synthesis: a density functional theory study. ChemPhysChem, 2022, 24(8): e202200864. |
[16] | ZHOU H Y, LI J C, WEN Z, et al. Tuning the catalytic activity of a single Mo atom supported on graphene for nitrogen reduction via Se atom doping. Physical Chemistry Chemical Physics, 2019, 21(27): 14583. |
[17] |
LIU C, LI Q, WU C, et al. Single-boron catalysts for nitrogen reduction reaction. Journal of the American Chemical Society, 2019, 141(7): 2884.
DOI PMID |
[18] | ZHAO Z M, LONG Y, CHEN Y, et al. Phosphorus doped carbon nitride with rich nitrogen vacancy to enhance the electrocatalytic activity for nitrogen reduction reaction. Chemical Engineering Journal, 2021, 430(1): 132682. |
[19] | LI. Q Y, QIU S Y, LIU C G, et al. Computational design of single-molybdenum catalysts for the nitrogen reduction reaction. Journal of Physical Chemistry C, 2019, 123(4): 2347. |
[20] | ZHANG S, WANG M, JIANG S, et al. The activation and reduction of N2 by single/double-atom electrocatalysts: a first-principle study. ChemistrySelect, 2021, 6(8): 1787. |
[21] | WU J, YANG L, LIU X, et al. Transition metal decorated bismuthene for ammonia synthesis: a density functional theory study. Chinese Chemical Letters, 2022, 34(6): 107659. |
[22] | CHEN Z, ZHAO J X, CABRERA C R, et al. Computational screening of efficient single-atom catalysts based on graphitic carbon nitride (g-C3N4) for nitrogen electroreduction. Small Methods, 2018, 3(6): 1800368. |
[23] |
LIU K, FU J W, ZHU L, et al. Single-atom transition metals supported on black phosphorene for electrochemical nitrogen reduction. Nanoscale, 2020, 12(8): 4903.
DOI PMID |
[24] |
XU Z W, SONG R F, WANG M Y, et al. Single atom-doped arsenene as electrocatalyst for reducing nitrogen to ammonia: a DFT study. Physical Chemistry Chemical Physics, 2020, 22(45): 26223.
DOI PMID |
[25] |
SONG R F, YANG.J, WANG M Y, et al. Theoretical study on P-coordinated metal atoms embedded in arsenene for the conversion of nitrogen to ammonia. ACS Omega, 2021, 6(12): 8662.
DOI PMID |
[26] | DELLEY B. An all-electron numerical method for solving the local density functional for polyatomic molecules. Journal of Chemical Physics, 1990, 92(1): 508. |
[27] | DELLEY B. From molecules to solids with the DMol3 approach. Journal of Chemical Physics, 2000, 113(18): 7756. |
[28] |
PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18): 3865.
DOI PMID |
[29] | DELLEY B. Hardness conserving semilocal pseudopotentials. Physical Review B, 2002, 66(15): 155125. |
[30] | TODOROVA T, DELLEY B. Wetting of paracetamol surfaces studied by DMol3-COSMO calculations. Molecular Simulation, 2008, 34(10): 1013. |
[31] | CUI C N, ZHANG H C, LUO Z X. Nitrogen reduction reaction on small iron clusters supported by N-doped graphene: a theoretical study of the atomically precise active-site mechanism. Nano Research, 2020, 13(8): 2280. |
[32] | NØRSKOV J K, ROSSMEISL J. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. Journal of Physical Chemistry B, 2004, 108(46): 17886. |
[33] |
AMBARISH K, SAMIRA S, ANJLI P, et al. Understanding catalytic activity trends in the oxygen reduction reaction. Chemical Reviews, 2018, 118(5): 2302.
DOI PMID |
[34] | LIM D H, WILCOX J. Mechanisms of the oxygen reduction reaction on defective graphene-supported Pt nanoparticles from first-principles. Journal of Physical Chemistry C, 2012, 116(5): 3653. |
[35] |
ZHAO J X, CHEN Z F. Single Mo atom supported on defective boron nitride monolayer as an efficient electrocatalyst for nitrogen fixation: a computational study. Journal of the American Chemical Society, 2017, 139(36): 12480.
DOI PMID |
[36] | JIAO Y, ZHENG Y, DAVEY K, et al. Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped graphene. Nature Energy, 2016, 1: 16130. |
[37] | HAMMER B, NØRSKOV J K. Theoretical surface science and catalysis—calculations and concepts. Advances in Catalysis, 2000, 45: 71. |
[38] | LIU X, CHENG Y J, ZHENG Y, et al. Building up a picture of the electrocatalytic nitrogen reduction activity of transition metal single atom catalysts. Journal of the American Chemical Society, 2019, 141(24): 9664. |
[39] | WEI Z X, ZHANG Y F, WANG S Y, et al. Fe-doped phosphorene for the nitrogen reduction reaction. Journal of Materials Chemistry A, 2018, 6(28): 13790. |
[40] | SONG W, WANG J, FU L, et al. First-principles study on Fe2B2 as efficient catalyst for nitrogen reduction reaction. Chinese Chemical Letters, 2021, 32(10): 3137. |
[41] | AAYUSH R S, BRIAN A R, JAY A S, et al. Electrochemical ammonia synthesis—the selectivity challenge. ACS Catalysis, 2016, 7(1): 706. |
[42] | LIU C W, LI Q Y, ZHANG J, et al. Theoretical evaluation of possible 2D boron monolayer in N2 electrochemical conversion into ammonia. Journal of Physical Chemistry C, 2018, 122(44): 25268. |
[43] | XIAO B B, YANG L, YU L B, et al. The VN3 embedded graphane with the improved selectivity for nitrogen fixation. Applied Surface Science, 2020, 513(30): 145855. |
[44] | WANG Z G, WU H H, LI Q, et al. Reversing interfacial catalysis of ambipolar WSe2 single crystal. Advanced Science, 2019, 7(3): 1901382. |
[45] | LIU X, YANG L, WEI T, et al. Active MoS2-based electrode for green ammonia synthesis. Chinese Journal of Chemical Engineering, 2023, 65: 268. |
[1] | YANG Xin, HAN Chunqiu, CAO Yuehan, HE Zhen, ZHOU Ying. Recent Advances in Electrocatalytic Nitrate Reduction to Ammonia Using Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(9): 979-991. |
[2] | WU Guangyu, SHU Song, ZHANG Hongwei, LI Jianjun. Enhanced Styrene Adsorption by Grafted Lactone-based Activated Carbon [J]. Journal of Inorganic Materials, 2024, 39(4): 390-398. |
[3] | SUN Chuan, HE Pengfei, HU Zhenfeng, WANG Rong, XING Yue, ZHANG Zhibin, LI Jinglong, WAN Chunlei, LIANG Xiubing. SiC-based Ceramic Materials Incorporating GNPs Array: Preparation and Mechanical Characterization [J]. Journal of Inorganic Materials, 2024, 39(3): 267-273. |
[4] | XIE Tian, SONG Erhong. Effect of Elastic Strains on Adsorption Energies of C, H and O on Transition Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(11): 1292-1300. |
[5] | WANG Yanli, QIAN Xinyi, SHEN Chunyin, ZHAN Liang. Graphene Based Mesoporous Manganese-Cerium Oxides Catalysts: Preparation and Low-temperature Catalytic Reduction of NO [J]. Journal of Inorganic Materials, 2024, 39(1): 81-89. |
[6] | YANG Pingjun, LI Tiehu, LI Hao, DANG Alei. Effect of Graphene on Graphitization, Electrical and Mechanical Properties of Epoxy Resin Carbon Foam [J]. Journal of Inorganic Materials, 2024, 39(1): 107-112. |
[7] | DONG Yiman, TAN Zhan’ao. Research Progress of Recombination Layers in Two-terminal Tandem Solar Cells Based on Wide Bandgap Perovskite [J]. Journal of Inorganic Materials, 2023, 38(9): 1031-1043. |
[8] | CHEN Saisai, PANG Yali, WANG Jiaona, GONG Yan, WANG Rui, LUAN Xiaowan, LI Xin. Preparation and Properties of Green-yellow Reversible Electro-thermochromic Fabric [J]. Journal of Inorganic Materials, 2022, 37(9): 954-960. |
[9] | HU Yue, AN Lin, HAN Xin, HOU Chengyi, WANG Hongzhi, LI Yaogang, ZHANG Qinghong. RhO2 Modified BiVO4 Thin Film Photoanodes: Preparation and Photoelectrocatalytic Water Splitting Performance [J]. Journal of Inorganic Materials, 2022, 37(8): 873-882. |
[10] | SUN Lian, GU Quanchao, YANG Yaping, WANG Honglei, YU Jinshan, ZHOU Xingui. Two-dimensional Transition Metal Dichalcogenides for Electrocatalytic Oxygen Reduction Reaction [J]. Journal of Inorganic Materials, 2022, 37(7): 697-709. |
[11] | SUN Ming, SHAO Puzhen, SUN Kai, HUANG Jianhua, ZHANG Qiang, XIU Ziyang, XIAO Haiying, WU Gaohui. First-principles Study on Interface of Reduced Graphene Oxide Reinforced Aluminum Matrix Composites [J]. Journal of Inorganic Materials, 2022, 37(6): 651-659. |
[12] | AN Lin, WU Hao, HAN Xin, LI Yaogang, WANG Hongzhi, ZHANG Qinghong. Non-precious Metals Co5.47N/Nitrogen-doped rGO Co-catalyst Enhanced Photocatalytic Hydrogen Evolution Performance of TiO2 [J]. Journal of Inorganic Materials, 2022, 37(5): 534-540. |
[13] | WANG Peng, JIN Zunlong, CHEN Ningguang, LIU Yonghao. Theoretical Investigation of Mo Doped α-MnO2 Electrocatalytic Oxygen Evolution Reaction [J]. Journal of Inorganic Materials, 2022, 37(5): 541-546. |
[14] | WANG Hongli, WANG Nan, WANG Liying, SONG Erhong, ZHAO Zhankui. Hydrogen Generation from Formic Acid Boosted by Functionalized Graphene Supported AuPd Nanocatalysts [J]. Journal of Inorganic Materials, 2022, 37(5): 547-553. |
[15] | DONG Shurui, ZHAO Di, ZHAO Jing, JIN Wanqin. Effect of Ionized Amino Acid on the Water-selective Permeation through Graphene Oxide Membrane in Pervaporation Process [J]. Journal of Inorganic Materials, 2022, 37(4): 387-394. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||