Journal of Inorganic Materials
HOU Jiabing, HU Qiang, CUI Jiuzhi, HUANG Yundi, WANG Xinrui, LIU Xingquan
Received:
2025-02-25
Revised:
2025-05-19
Contact:
LIU Xingquan, professor. E-mail: Lxquan@uestc.edu.cnc
About author:
HOU Jiabing(2000-), male, Master candidate. E-mail: houjiabing10@163.com
Supported by:
CLC Number:
HOU Jiabing, HU Qiang, CUI Jiuzhi, HUANG Yundi, WANG Xinrui, LIU Xingquan. High-entropy Doping Modification of High-nickel Single-crystal Layered Ternary Cathode Material[J]. Journal of Inorganic Materials, DOI: 10.15541/jim20250085.
[1] MAO M, JI X, WANG Q,et al. Anion-enrichment interface enables high-voltage anode-free lithium metal batteries. Nature Communications, 2023, 14(1): 1082. [2] 朱亮, 严长青, 倪涛来. 锂离子电池预锂化技术的研究现状. 电池, 2018, 48(3): 206. [3] 李鹏飞, 李威, 许春阳, 等. 锂离子电池三元正极材料掺杂改性研究进展. 郑州大学学报(理学版), 2024, 56(5): 80. [4] YANG T, ZHANG K, ZUO Y,et al. Ultrahigh-nickel layered cathode with cycling stability for sustainable lithium-ion batteries. Nature Sustainability, 2024, 7(9): 1204. [5] TAN S, SHADIKE Z, LI J,et al. Additive engineering for robust interphases to stabilize high-Ni layered structures at ultra-high voltage of 4.8 V. Nature Energy, 2022, 7(6): 484. [6] CAO L, CHU M, LI Y,et al. In situ , CHU M, LI Yring for robust interphases to stabiultralong‐life toward advanced lithium‐metal batteries . Advanced Materials, 2024, 36(41): 2406034. [7] ZHANG R, WANG C, ZOU P,et al. Compositionally complex doping for zero-strain zero-cobalt layered cathodes. Nature, 2022, 610(7930): 67. [8] DOU S.Review and prospect of layered lithium nickel manganese oxide as cathode materials for Li-ion batteries.Journal of Solid State Electrochemistry, 2013, 17: 911. [9] QIN L, YU H, JIANG X,et al. All-dry solid-phase synthesis of single-crystalline Ni-rich ternary cathodes for lithium-ion batteries. Science China Materials, 2024, 67(2): 650. [10] LI H, LI J, ZAKER N,et al. Synthesis of single crystal LiNi0.88Co0.09Al0.03O2 with a two-step lithiation method. Journal of The Electrochemical Society, 2019, 166(10): A1956. [11] PANG P, TAN X, WANG Z,et al. Crack-free single-crystal LiNi0.83Co0.10Mn0.07O2 as cycling/thermal stable cathode materials for high-voltage lithium-ion batteries. Electrochimica Acta, 2021, 365: 137380. [12] SONG J, HUANG L, YANG G,et al. Solid-state approach for synthesizing single crystal LiNi0.8Co0.1Mn0.1O2 cathode of lithium-ion batteries. Journal of Alloys and Compounds, 2023, 946: 169358. [13] LEE S H, SIM S J, JIN B S,et al. High performance well-developed single crystal LiNi0.91Co0.06Mn0.03O2 cathode via LiCl-NaCl flux method. Materials Letters, 2020, 270: 127615. [14] ZHOU W, HUANG H, LIU X, et al. Perspective on the preparation methods of single crystalline high nickel oxide cathode materials. Advanced Energy Materials, 2023, 13(32): 2300378. [15] YU B, WANG Y, LI J,et al. Recent advances on low-Co and Co-free high entropy layered oxide cathodes for lithium-ion batteries. Nanotechnology, 2023, 34(45): 452501. [16] GAO H, LI J, ZHANG F,et al. Revealing the potential and challenges of high‐entropy layered cathodes for sodium‐based energy storage. Advanced Energy Materials, 2024, 14(20): 2304529. [17] BÉRARDAN D, FRANGER S, MEENA AK,et al. Room temperature lithium superionic conductivity in high entropy oxides. Journal of Materials Chemistry A , 2016, 4(24): 9536. [18] XU Z, CHEN X, FAN W,et al. High-entropy rock-salt surface layer stabilizes the ultrahigh-Ni single-crystal cathode. ACS Nano, 2024, 18(49): 33706. [19] SARKAR A, VELASCO L, WANG D,et al. High entropy oxides for reversible energy storage. Nature Communications, 2018, 9: 3400. [20] TAN X, ZHANG Y, XU S,et al. High‐entropy surface complex stabilized LiCoO2 cathode. Advanced Energy Materials, 2023, 13(24): 2300147. [21] ZHAO C, WANG C, LIU X,et al. Suppressing strain propagation in ultrahigh-Ni cathodes during fast charging via epitaxial entropy-assisted coating. Nature Energy, 2024, 9(3): 345. [22] SONG J, NING F, ZUO Y,et al. Entropy stabilization strategy for enhancing the local structural adaptability of Li‐rich cathode materials. Advanced Materials, 2023, 35(7): 2208726. [23] LIU S, LIU F, ZHAO S,et al. A high‐entropy engineering on sustainable anionic redox Mn‐based cathode with retardant stress for high‐rate sodium‐ion batteries. Angewandte Chemie International Edition, 2025, 64(10): e202421089. [24] ZHOU J, HU J, ZHOU X,et al. High-entropy doping for high-performance zero-cobalt high-nickel layered cathode materials. Energy & Environmental Science, 2025, 18(1): 347. [25] STURMAN J, YIM C H, BARANOVA E A, et al. Communication—design of LiNi0.2Mn0.2Co0.2Fe0.2Ti0.2O2 as a high-entropy cathode for lithium-ion batteries guided by machine learning. Journal of The Electrochemical Society, 2021, 168(5): 050541. [26] XU J, YOU J, WU Y, et al. Building an entropy-assisted enhanced surface on ultrahigh nickel cathodes to improve electrochemical stability. Journal of Colloid And Interface Science, 2025, 682: 961. [27] ZENG C, FAN F, ZHENG R, et al. Structure and charge regulation strategy enabling superior cycling stability of Ni-rich cathode materials. ACS Applied Materials & Interfaces, 2024, 16(9): 11377. [28] REN J, LIU Z, TANG Y,et al. Enhancing electrochemical performance of nickel-rich NCM cathode material through Nb modification across a wide temperature range. Journal of Power Sources, 2024, 606: 234522. [29] HUANG L, ZHU J, LIU J,et al. Emerging high-entropy strategy: a booster to the development of cathode materials for power batteries. Journal of Advanced Ceramics, 2024, 13(8): 1093. [30] LI L, RAN Q, HAO S,et al. Dual functions of zirconium metaphosphate modified high-nickel layered oxide cathode material with enhanced electrochemical performance. Journal of Colloid And Interface Science, 2022, 615: 554. [31] YANG S, FAN Q, SHI Z,et al. Superior stability secured by a four-phase cathode electrolyte interface on a Ni-rich cathode for lithium ion batteries. ACS Applied Materials & Interfaces, 2019, 11(40): 36742. [32] LI X, ZHANG K, WANG M,et al. Dual functions of zirconium modification on improving the electrochemical performance of Ni-rich LiNi0.8Co0.1Mn0.1O2. Sustainable Energy & Fuels, 2018, 2(2): 413. [33] SUN G, ZHUANG S, JIANG S,et al. Elevating cycle stability of Ni-rich NCM811 cathode via single-crystallization integrating dual-modification strategy for lithium-ion batteries. Journal of Alloys and Compounds, 2024, 976: 173097. |
[1] | CUI Ning, ZHANG Yuxin, WANG Lujie, LI Tongyang, YU Yuan, TANG Huaguo, QIAO Zhuhui. Single-phase Formation Process and Carbon Vacancy Regulation of (TiVNbMoW)Cx High-entropy Ceramics [J]. Journal of Inorganic Materials, 2025, 40(5): 511-520. |
[2] | LI Ziwei, GONG Weilu, CUI Haifeng, YE Li, HAN Weijian, ZHAO Tong. (Zr, Hf, Nb, Ta, W)C-SiC Composite Ceramics: Preparation via Precursor Route and Properties [J]. Journal of Inorganic Materials, 2025, 40(3): 271-280. |
[3] | FAN Wenkai, YANG Xiao, LI Honghua, LI Yong, LI Jiangtao. Pressureless Sintering of (Y0.2Gd0.2Er0.2Yb0.2Lu0.2)2Zr2O7 High-entropy Ceramic and Its High Temperature CMAS Corrosion Resistance [J]. Journal of Inorganic Materials, 2025, 40(2): 159-167. |
[4] | BAO Weichao, GUO Xiaojie, XIN Xiaoting, PENG Pai, WANG Xingang, LIU Jixuan, ZHANG Guojun, XU Fangfang. Establishment of Symbiotic Structure with Metal Atomic-layer Phase-separation in Carbide Ceramics [J]. Journal of Inorganic Materials, 2025, 40(1): 17-22. |
[5] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[6] | LIU Guoang, WANG Hailong, FANG Cheng, HUANG Feilong, YANG Huan. Effect of B4C Content on Mechanical Properties and Oxidation Resistance of (Ti0.25Zr0.25Hf0.25Ta0.25)B2-B4C Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 697-706. |
[7] | ZHANG Rui, ZHANG Kan, YUAN Mengya, GU Xinlei, ZHENG Weitao. Nitrogen Vacancy Regulated Lattice Distortion on Improvement of (NbMoTaW)Nx Thin Films: Mechanical Properties and Wear Resistance [J]. Journal of Inorganic Materials, 2024, 39(6): 715-725. |
[8] | ZHANG Wenyu, GUO Ruihua, YUE Quanxin, HUANG Yarong, ZHANG Guofang, GUAN Lili. High-entropy Phosphide Bifunctional Catalyst: Preparation and Performance of Efficient Water Splitting [J]. Journal of Inorganic Materials, 2024, 39(11): 1265-1274. |
[9] | GUO Lingxiang, TANG Ying, HUANG Shiwei, XIAO Bolan, XIA Donghao, SUN Jia. Ablation Resistance of High-entropy Oxide Coatings on C/C Composites [J]. Journal of Inorganic Materials, 2024, 39(1): 61-70. |
[10] | GUO Tianmin, DONG Jiangbo, CHEN Zhengpeng, RAO Mumin, LI Mingfei, LI Tian, LING Yihan. Enhanced Compatibility and Activity of High-entropy Double Perovskite Cathode Material for IT-SOFC [J]. Journal of Inorganic Materials, 2023, 38(6): 693-700. |
[11] | ZHANG Shouchao, CHEN Hongyu, LIU Hongfei, YANG Yu, LI Xin, LIU Defeng. High Temperature Recovery of Neutron Irradiation-induced Swelling and Optical Property of 6H-SiC [J]. Journal of Inorganic Materials, 2023, 38(6): 678-686. |
[12] | YANG Xiaoming, LAN Jianghe, WEI Zhantao, SU Rongbing, LI Yang, WANG Zujian, LIU Ying, HE Chao, LONG Xifa. High Quality and Large Size Yttrium Iron Garnet Crystal Grown by Top Seeded Solution Growth Technique [J]. Journal of Inorganic Materials, 2023, 38(3): 322-328. |
[13] | LI Yicun, LIU Xuedong, HAO Xiaobin, DAI Bing, LYU Jilei, ZHU Jiaqi. Rapid Growth of Single Crystal Diamond at High Energy Density by Plasma Focusing [J]. Journal of Inorganic Materials, 2023, 38(3): 303-309. |
[14] | WANG Zhiqiang, WU Ji’an, CHEN Kunfeng, XUE Dongfeng. Large-size Er,Yb:YAG Single Crystal: Growth and Performance [J]. Journal of Inorganic Materials, 2023, 38(3): 329-334. |
[15] | LI Yicun, HAO Xiaobin, DAI Bing, WEN Dongyue, ZHU Jiaqi, GENG Fangjuan, YUE Weiping, LIN Weiqun. Optimization Design of MPCVD Single Crystal Diamond Growth Based on Plasma Diagnostics [J]. Journal of Inorganic Materials, 2023, 38(12): 1405-1412. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||