Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (6): 678-686.DOI: 10.15541/jim20220609
Special Issue: 【材料计算】计算材料(202409)
• RESEARCH ARTICLE • Previous Articles Next Articles
ZHANG Shouchao1(), CHEN Hongyu1, LIU Hongfei1, YANG Yu1, LI Xin2, LIU Defeng2
Received:
2022-10-17
Revised:
2022-12-26
Published:
2023-02-07
Online:
2023-02-07
About author:
ZHANG Shouchao (1982-), associate professor. E-mail: zhshch@tcu.edu.cn
Supported by:
CLC Number:
ZHANG Shouchao, CHEN Hongyu, LIU Hongfei, YANG Yu, LI Xin, LIU Defeng. High Temperature Recovery of Neutron Irradiation-induced Swelling and Optical Property of 6H-SiC[J]. Journal of Inorganic Materials, 2023, 38(6): 678-686.
Fig. 2 Diffraction pattern of crystal and lattice parameters recovery by isochronal annealing at different temperatures (a) 6H-SiC crystal; (b) a-axis change; (c) c-axis change; (d) Lattice volume change
Fig. 3 Absorption spectra of SiC changed with annealing temperature (a) and mechanism of absorption at 625 nm and electron transition path (b) Colorful figures are available on website
Fig. 6 Distribution of the density states of the ideal and 6H-SiC with different intrinsic defects (a) Total density of states; (b) Partial density of states
Fig. 7 Photoluminescence spectra of 6H-SiC after being annealed at different temperatures (a) Emission spectra; (b) Excitation spectra. λex=340 nm, λem=550 nm
Fig. 8 Raman spectra of 6H-SiC (a) Unirradiated; (b) Irradiated; (c) Annealed at 600 ℃; (d) Annealed at 1650 ℃. ×1, ×50 and ×100 represents Raman spectral intensity amplification of 1, 50, and 100 times, respectively. Colorful figures are available on website
[1] |
PEARTON S J, AITKALIYEVA A, XIAN M H, et al. Review- radiation damage in wide and ultra-wide bandgap semiconductors. ECS Journal of Solid State Science and Technology, 2021, 10(5):055008.
DOI |
[2] | KONINGS R, STOLLER R. Comprehensive Nuclear materials. Amsterdam: Elsevier, 2020: 437-461. |
[3] |
CAMPBELL A A, PORTER W D, KATOH Y, et al. Method for analyzing passive silicon carbide thermometry with a continuous dilatometer to determine irradiation temperature. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2016, 370(1):49.
DOI URL |
[4] |
IVÁDY V, DAVIDSSON J, SON N T, et al. Identification of Si-vacancy related room-temperature qubits in 4H silicon carbide. Physical Review B, 2017, 96(16):161114.
DOI URL |
[5] |
GERSTMANN U, RAULS E, FRAUENHEIM T, et al. Formation and annealing of nitrogen-related complexes in SiC. Physical Review B, 2003, 67(20):205202.
DOI URL |
[6] |
MATTAUSCH A, BOCKSTEDTE M, PANKRATOV O. Thermally stable carbon-related centers in 6H-SiC: photoluminescence spectra and microscopic models. Physical Review B, 2006, 73(16):161201.
DOI URL |
[7] |
JIANG W, WANG H, KIM I, et al. Response of nanocrystalline 3C silicon carbide to heavy-ion irradiation. Physical Review B, 2009, 80(16):161301.
DOI URL |
[8] |
LIU Y, WANG G, WANG S C, et al. Defect-induced magnetism in neutron irradiated 6H-SiC single crystals. Physical Review Letters, 2011, 106(8):087205.
DOI URL |
[9] | KOYANAGI T, WANG H, KARAKOC O, et al. Mechanisms of stored energy release in silicon carbide materials neutron-irradiated at elevated temperatures. Materials & Design, 2022, 214: 110413. |
[10] |
CSÓRÉ A, MUKESH N, KÁROLYHÁZY G, et al. Photoluminescence spectrum of divacancy in porous and nanocrystalline cubic silicon carbide. Journal of Applied Physics, 2022, 131(7):071102.
DOI URL |
[11] |
LIN S S. Light-emitting two-dimensional ultrathin silicon carbide. The Journal of Physical Chemistry C, 2012, 116(6):3951.
DOI URL |
[12] |
KERBIRIOU X, COSTANTINI J M, SAUZAY M. Amorphization and dynamic annealing of hexagonal SiC upon heavy-ion irradiation: effects on swelling and mechanical properties. Journal of Applied Physics, 2008, 105(7):073513.
DOI URL |
[13] |
KATOH Y, HASHIMOTO N, KONDO S, et al. Microstructural development in cubic silicon carbide during irradiation at elevated temperatures. Journal of Nuclear Materials, 2006, 351(1/2/3):228.
DOI URL |
[14] |
JIN E Z, NIU L S. Crystalline-to-amorphous transition in silicon carbide under neutron irradiation. Vacuum, 2012, 86(7):917.
DOI URL |
[15] |
SNEAD L L, HAY J C. Neutron irradiation induced amorphization of silicon carbide. Journal of Nuclear Materials, 1999, 273(2):213.
DOI URL |
[16] |
YANO T, MIYAZAKI H, AKIYOSHI M, et al. X-ray diffractometry and high-resolution electron microscopy of neutron- irradiated SiC to a fluence of 1.9×1027 n/m2. Journal of Nuclear Materials, 1998, 253(1/2/3):78.
DOI URL |
[17] |
SUZUKI H, ISEKI T, ITO M. Annealing behavior of neutron irradiated β-SiC. Journal of Nuclear Materials, 1973, 48(3):247.
DOI URL |
[18] |
SUZUKI T, MARUYAMA T, ISEKI T. Recovery behavior in neutron irradiated β-SiC. Journal of Nuclear Materials, 1987, 149(3):334.
DOI URL |
[19] | SNEAD L L, KATOH Y, CONNERY S. Swelling of SiC at intermediate and high irradiation temperatures. Journal of Nuclear Materials, 2007, 367(1):677. |
[20] |
YANO T, YOU Y, KANAZAWA K, et al. Recovery behavior of neutron-irradiation-induced point defects of high-purity β-SiC. Journal of Nuclear Materials, 2014, 455(1/2/3):445.
DOI URL |
[21] | ZHU W, RUAN Y F, CHEN J, et al. Annealing characteristics of heavy neutron-irradiated 6H-SiC crystal. Bulletin of the Chinese Ceramic Society, 2012, 31(2):386. |
[22] |
YANG F, WANG W P, WANG D, et al. Mechanical and optical property assessment of irradiated SiC with displaced atoms. Journal of the European Ceramic Society, 2021, 41(8):4429.
DOI URL |
[23] | MILLER K, ZHOU Q, CHEN J. Optical absorption of doped and undoped bulk SiC. MRS Online Proceedings Library, 2000, 640: 523. |
[24] |
KIM S K, JUNG E Y, LEE M H. Defect-induced luminescence quenching of 4H-SiC single crystal grown by PVT method through a control of incorporated impurity concentration. Compounds, 2022, 2(1):68.
DOI URL |
[25] |
BIEDERMANN E. The optical absorption bands and their anisotropy in the various modifications of SiC. Solid State Communications, 1965, 3(10):343.
DOI URL |
[26] |
WEINGÄRTNER R, BICKERMANN M, HERRO Z, et al. Impact of compensation on optical absorption bands in the below band-gap region in n-type (N) 6H-SiC. Materials Science Forum, 2003, 433-436: 333.
DOI URL |
[27] |
WEINGÄRTNER R, WELLMANN P J, BICKERMANN M, et al. Determination of charge carrier concentration in n- and p-doped SiC based on optical absorption measurements. Applied Physics Letters, 2002, 80(1):70.
DOI URL |
[28] |
GERSTMANN U, RAULS E, FRAUENHEIM T, et al. Formation and annealing of nitrogen-related complexes in SiC. Physical Review B, 2003, 67(20):205202.
DOI URL |
[29] |
FUTSUHARA M, YOSHIOKA K, TAKAI O. Structural, electrical and optical properties of zinc nitride thin films prepared by reactive RF magnetron sputtering. Thin Solid Films, 1998, 322(1/2):274.
DOI URL |
[30] | WANG K, YAN L P, SHAO K, et al. Near-infrared afterglow enhancement and trap distribution analysis of silicon-chromium Co-doped persistent luminescence materials Zn1+xGa2-2xSixO4:Cr3+. Journal of Inorganic Materials, 2019, 34(9):983. |
[31] |
FELDMAN D W, JAMES H. PARKER, J R, et al. Phonon dispersion curves by Raman scattering in SiC, polytypes 3C, 4H, 6H, 15R, and 21R. Physical Review, 1968, 173(3):787.
DOI URL |
[32] |
WANG P F, HUANG L, ZHU W, et al. Raman scattering of neutron irradiated 6H-SiC. Solid State Communications, 2012, 152(10):887.
DOI URL |
[33] |
MADITO M J, HLATSHWAYO T T, MTSHALI C B. Chemical disorder of a-SiC layer induced in 6H-SiC by Cs and I ions co-implantation: Raman spectroscopy analysis. Applied Surface Science, 2021, 538(1):148099.
DOI URL |
[34] |
DAVIDSSON J, IVADY V, ARMIENTO R, et al. Identification of divacancy and silicon vacancy qubits in 6H-SiC. Applied Physics Letters, 2019, 114(11):112107.
DOI URL |
[35] |
SORIEUL S, COSTANTINI J M, GOSMAIN L, et al. Raman spectroscopy study of heavy-ion-irradiated ɑ-SiC. Journal of Physics: Condensed Matter, 2006, 18(22):5235.
DOI URL |
[36] | LEIDE A J, LLOYD M J, TODD R I, et al. Raman spectroscopy of ion irradiated SiC: chemical defects, strain, annealing, and oxidation. https://arxiv.org/abs/2004.14335, 2020-06-02. |
[37] |
BEYER F C, HEMMINGSSON C, PEDERSEN H, et al. Annealing behavior of the EB-centers and M-center in low-energy electron irradiated n-type 4H-SiC. Journal of Applied Physics, 2011, 109(10):103703.
DOI URL |
[38] |
BEYER F C, HEMMINGSSON C G, PEDERSEN H, et al. Capacitance transient study of a bistable deep level in e-irradiated n-type 4H-SiC. Journal of Physics D: Applied Physics, 2012, 45(45):455301.
DOI |
[39] | BRODAR T, BAKRAČ L, CAPAN I, et al. Depth profile analysis of deep level defects in 4H-SiC introduced by radiation. Crystals, 2020, 10(9):845. |
[40] |
YANO T, YOU Y, KANAZAWA K, et al. Recovery behavior of neutron-irradiation-induced point defects of high-purity β-SiC. Journal of Nuclear Materials, 2014, 455(1/2/3):445.
DOI URL |
[41] |
ZHANG S C, CUI X H, LIU H F, et al. Investigation of the recovery process in low-dose neutron-irradiated 6H-SiC by lattice parameter and FWHM of diffraction peak measurements. Radiation Effects and Defects in Solids, 2022, 177(417):800.
DOI URL |
[42] |
ZOLNAI Z, SON N T, HALLIN C, et al. Annealing behavior of the carbon vacancy in electron-irradiated 4H-SiC. Journal of Applied Physics, 2004, 96(4):2406.
DOI URL |
[43] |
EBERLEIN T A G, JONES R, ÖBERG S, et al. Density functional theory calculation of the DI optical center in SiC. Physical Review B, 2006, 74(14):144106.
DOI URL |
[44] |
TORPO L, MARLO M, STAAB T E M, et al. Comprehensive ab initio study of properties of monovacancies and antisites in 4H-SiC. Journal of Physics: Condensed Matter, 2001, 13(28):6203.
DOI URL |
[45] |
SON N T, IVANOV I G. Charge state control of the silicon vacancy and divacancy in silicon carbide. Journal of Applied Physics, 2021, 129(21):215702.
DOI URL |
[46] |
CSÓRÉ A, SON N T, GALI A. Towards identification of silicon vacancy-related electron paramagnetic resonance centers in 4H-SiC. Physical Review B, 2021, 104(3):035207.
DOI URL |
[47] |
COUTINHO J. Theory of the thermal stability of silicon vacancies and interstitials in 4H-SiC. Crystals, 2021, 11(2):167.
DOI URL |
[48] |
KARSTHOF R, BATHEN M E, GALECKAS A, et al. Conversion pathways of primary defects by annealing in proton-irradiated n-type 4H-SiC. Physical Review B, 2020, 102(18):184111.
DOI URL |
[49] | HOU B B, RUAN Y F, LI L G, et al. Optical properties and defect analysis of 6H-SiC crystals irradiated by heavy neutron. Journal of the Chinese Ceramic Society, 2014, 42(3):349. |
[1] | LI Chengyu, DING Ziyou, HAN Yingchao. In vitro Antibacterial and Osteogenic Properties of Manganese Doped Nano Hydroxyapatite [J]. Journal of Inorganic Materials, 2024, 39(3): 313-320. |
[2] | LIU Song, ZHANG Faqiang, LUO Jin, LIU Zhifu. 0.9BaTiO3-0.1Bi(Mg1/2Ti1/2)O3 Ferroelectric Thin Films: Preparation and Energy Storage [J]. Journal of Inorganic Materials, 2024, 39(3): 291-298. |
[3] | CHEN Mengjie, WANG Qianqian, WU Chengtie, HUANG Jian. Predicting the Degradability of Bioceramics through a DFT-based Descriptor [J]. Journal of Inorganic Materials, 2024, 39(10): 1175-1181. |
[4] | HAN Xu, YAO Hengda, LYU Mei, LU Hongbo, ZHU Jun. Application of Single-molecule Liquid Crystal Additives in CH(NH2)2PbI3 Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(9): 1097-1102. |
[5] | WU Xiaowei, ZHANG Han, ZENG Biao, MING Chen, SUN Yiyang. Comparison of Hybrid Functionals HSE and PBE0 in Calculating the Defect Properties of CsPbI3 [J]. Journal of Inorganic Materials, 2023, 38(9): 1110-1116. |
[6] | WU Wei, BAKHET Shahd, ASANTE Naomi Addai, KAREEM Shefiu, KOMBO Omar Ramadhan, LI Binbin, DAI Honglian. In vitro Study of Biphasic Calcium Magnesium Phosphate Microspheres for Angiogenesis and Bone Formation [J]. Journal of Inorganic Materials, 2023, 38(7): 830-838. |
[7] | YANG Yingkang, SHAO Yiqing, LI Bailiang, LÜ Zhiwei, WANG Lulu, WANG Liangjun, CAO Xun, WU Yuning, HUANG Rong, YANG Chang. Enhanced Band-edge Luminescence of CuI Thin Film by Cl-doping [J]. Journal of Inorganic Materials, 2023, 38(6): 687-692. |
[8] | WANG Tongyu, RAN Haofeng, ZHOU Guangdong. Defect-induced Analogue Resistive Switching Behavior in FeOx-based Memristor and Synaptic Paired-pulse Facilitation Feature [J]. Journal of Inorganic Materials, 2023, 38(4): 437-444. |
[9] | SHI Xiaotu, ZHANG Qingli, SUN Guihua, LUO Jianqiao, DOU Renqin, WANG Xiaofei, GAO Jinyun, ZHNAG Deming, LIU Jiandang, YE Bangjiao. Positron Annihilation Study of Yb:YAG Single Crystal Defects under Czochralski Method [J]. Journal of Inorganic Materials, 2023, 38(3): 316-321. |
[10] | YU Ruixian, WANG Guodong, WANG Shouzhi, HU Xiaobo, XU Xiangang, ZHANG Lei. Effect of High-temperature Annealing on AlN Crystal Grown by PVT Method [J]. Journal of Inorganic Materials, 2023, 38(3): 343-349. |
[11] | QI Xuejun, ZHANG Jian, CHEN Lei, WANG Shaohan, LI Xiang, DU Yong, CHEN Junfeng. Macroscopic Defects of Large Bi12GeO20 Crystals Grown Using Vertical Bridgman Method [J]. Journal of Inorganic Materials, 2023, 38(3): 280-287. |
[12] | SHANGGUAN Li, NIE Xiaoshuang, YE Kuicai, CUI Yuanyuan, QIAO Yuqin. Effects of Surface Wettability of Titanium Oxide Coatings on Osteoimmunomodulatory Properties [J]. Journal of Inorganic Materials, 2023, 38(12): 1457-1565. |
[13] | FU Shi, YANG Zengchao, LI Honghua, WANG Liang, LI Jiangtao. Mechanical Properties and Thermal Conductivity of Si3N4 Ceramics with Composite Sintering Additives [J]. Journal of Inorganic Materials, 2022, 37(9): 947-953. |
[14] | JIAO Boxin, LIU Xingchong, QUAN Ziwei, PENG Yongshan, ZHOU Ruonan, LI Haimin. Performance of Perovskite solar cells Doped with L-arginine [J]. Journal of Inorganic Materials, 2022, 37(6): 669-675. |
[15] | SUN Ming, SHAO Puzhen, SUN Kai, HUANG Jianhua, ZHANG Qiang, XIU Ziyang, XIAO Haiying, WU Gaohui. First-principles Study on Interface of Reduced Graphene Oxide Reinforced Aluminum Matrix Composites [J]. Journal of Inorganic Materials, 2022, 37(6): 651-659. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||