Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (6): 693-700.DOI: 10.15541/jim20220551
• RESEARCH LETTER • Previous Articles Next Articles
GUO Tianmin1(), DONG Jiangbo2, CHEN Zhengpeng2, RAO Mumin2, LI Mingfei2, LI Tian1, LING Yihan1()
Received:
2022-09-21
Revised:
2022-11-13
Published:
2022-12-09
Online:
2022-12-09
Contact:
LING Yihan, professor. E-mail: lyhyy@cumt.edu.cnAbout author:
GUO Tianmin (1991-), male, Master. E-mail: 277263262@qq.com
Supported by:
CLC Number:
GUO Tianmin, DONG Jiangbo, CHEN Zhengpeng, RAO Mumin, LI Mingfei, LI Tian, LING Yihan. Enhanced Compatibility and Activity of High-entropy Double Perovskite Cathode Material for IT-SOFC[J]. Journal of Inorganic Materials, 2023, 38(6): 693-700.
Fig. 1 (a) XRD patterns and (b) corresponding magnified area of 2θ=45°-50° of GBCO and HE-GBO powders calcined at 1150 ℃ for 3 h, and (c) schematic diagram of the HE-GBO double perovskite structure
Fig. 4 EIS plots of symmetrical single cells with (a) HE-GBO and (b) HE-GBO-GDC cathodes measured from 800 to 600 ℃ in air Colorful figures are available on website
Fig. 5 Cross-section morphologies of single cell with (a) HE-GBO and (b) HE-GBO-GDC after 100 h long-term test, and (c, d) their magnified morphologies, respectively
Fig. 8 EIS plots of single cells with (a) HE-GBO and (b) HE-GBO-GDC cathodes measured from 800 ℃ to 600 ℃ in wet H2 (~3% H2O), (c) simulated polarization resistance, and (d) Arrhenius plots of single cells with HE-GBO and HE-GBO-GDC cathodes Colorful figures are available on website
[1] |
STEELE B C H, HEINZEL A. Materials for fuel-cell technologies. Nature, 2001, 414(6861):345.
DOI URL |
[2] | GUO M, TU H, LI S, YU Q, et al. Fabrication and characterization of functionally graded cathodes based on in-situ formed La0.6Sr0.4CoO3-δ for intermediate temperature SOFCs. Journal of Inorganic Materials, 2014, 29(6):621. |
[3] |
LING Y, GUO T, GUO Y, et al. New two-layer Ruddlesden-Popper cathode materials for protonic ceramics fuel cells. Journal of Advanced Ceramics, 2021, 10(5):1052.
DOI |
[4] |
LIU F, ZHAO Z, MA Y, et al. Robust Joule-heating ceramic reactors for catalytic CO oxidation. Journal of Advanced Ceramics, 2022, 11(7):1163.
DOI |
[5] |
ZHOU Q, WANG F, SHEN Y, et al. Performances of LnBaCo2O5+δ-Ce0.8Sm0.2O1.9 composite cathodes for intermediate temperature solid oxide fuel cells. Journal of Power Sources, 2010, 195(8): 2174.
DOI URL |
[6] |
JIN H, WANG H, ZHANG H, et al. Synthesis and characterization of GdBaCo2O5+δ cathode material by glycine-nitrate process. Journal of Inorganic Materials, 2012, 27(7):751.
DOI URL |
[7] |
TAN Y, WANG R, HU X, et al. Comparison of the oxygen reduction mechanisms in a GBCO-SDC-impregnated cathode and a GBCO cathode. Journal of Applied Electrochemistry, 2019, 49(10):1035.
DOI |
[8] |
ZHOU Q, ZHANG Y, SHEN Y, et al. Layered perovskite GdBaCuCoO5+δ cathode material for intermediate-temperature solid oxide fuel cells. Journal of the Electrochemical Society, 2010, 157(5):B628.
DOI URL |
[9] |
DING X, CUI C, GUO L. Thermal expansion and electrochemical performance of La0.7Sr0.3CuO3-δ-Sm0.2Ce0.8O2-δ composite cathode for IT-SOFCs. Journal of Alloys and Compounds, 2009, 481(1/2):845.
DOI URL |
[10] |
KONG X, LIU G, YI Z, et al. NdBaCu2O5+δ and NdBa0.5Sr0.5Cu2O5+δ layered perovskite oxides as cathode materials for IT-SOFCs. International Journal of Hydrogen Energy, 2015, 40(46):16477.
DOI URL |
[11] |
BURLEY J, MITCHELL J, SHORT S, et al. Structural and magnetic chemistry of NdBaCo2O5+δ. Journal of Solid State Chemistry, 2003, 170(2):339.
DOI URL |
[12] |
ASAI K, YONEDA A, YOKOKURA O, et al. Two spin-state transitions in LaCoO3. Journal of the Physical Society of Japan, 1998, 67(1):290.
DOI URL |
[13] |
KIM Y, MANTHIRAM A. Layered LnBaCo2-xCuxO5+δ (0≤x≤1.0) perovskite cathodes for intermediate-temperature solid oxide fuel cells. Journal of the Electrochemical Society, 2010, 158(3):B276.
DOI URL |
[14] |
HUANG X, FENG J, ABDELLATIF H R, et al. Electrochemical evaluation of double perovskite PrBaCo2-xMnxO5+δ (x=0, 0.5, 1) as promising cathodes for IT-SOFCs. International Journal of Hydrogen Energy, 2018, 43(18):8962.
DOI URL |
[15] |
JIN F, LI J, WANG Y, et al. Evaluation of Fe and Mn co-doped layered perovskite PrBaCo2/3Fe2/3Mn1/2O5+δ as a novel cathode for intermediate-temperature solid-oxide fuel cell. Ceramics International, 2018, 44(18):22489.
DOI URL |
[16] |
LI L, JIN F, SHEN Y, et al. Cobalt-free double perovskite cathode GdBaFeNiO5+δ and electrochemical performance improvement by Ce0.8Sm0.2O1.9 impregnation for intermediate-temperature solid oxide fuel cells. Electrochimica Acta, 2015, 182: 682.
DOI URL |
[17] |
ROST C M, SACHET E, BORMAN T, et al. Entropy-stabilized oxides. Nature Communications, 2015, 6(1):8485.
DOI PMID |
[18] |
YANG Y, MA L, GAN G Y, et al. Investigation of thermodynamic properties of high entropy (TaNbHfTiZr)C and (TaNbHfTiZr)N. Journal of Alloys and Compounds, 2019, 788: 1076.
DOI URL |
[19] |
OSES C, TOHER C, CURTAROLO S. High-entropy ceramics. Nature Reviews Materials, 2020, 5(4):295.
DOI |
[20] |
HAN X, YANG Y, FAN Y, et al. New approach to enhance Sr-free cathode performance by high-entropy multi-component transition metal coupling. Ceramics International, 2021, 47(12):17383.
DOI URL |
[21] |
YANG Y, BAO H, NI H, et al. A novel facile strategy to suppress Sr segregation for high-entropy stabilized La0.8Sr0.2MnO3-δ cathode. Journal of Power Sources, 2021, 482: 228959.
DOI URL |
[22] | LING Y, HAN X, YANG Y, et al. Stable high-entropy double perovskite cathode SmBa(Mn0.2Fe0.2Co0.2Ni0.2Cu0.2)2O5+δ for intermediate- temperature solid oxide fuel cells. Journal of the Chinese Ceramic Society, 2022, 50(1):219. |
[23] |
SONG W, MA Z, YANG Y, et al. Characterization and polarization DRT analysis of direct ethanol solid oxide fuel cells using low fuel partial pressures. International Journal of Hydrogen Energy, 2020, 45(28):14480.
DOI URL |
[24] |
SHAO X, RICKARD W D, DONG D, et al. High performance anode with dendritic porous structure for low temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2018, 43(37):17849.
DOI URL |
[25] |
ZHANG K, GE L, RAN R, et al. Synthesis, characterization and evaluation of cation-ordered LnBaCo2O5+δ as materials of oxygen permeation membranes and cathodes of SOFCs. Acta Materialia, 2008, 56(17):4876.
DOI URL |
[26] |
KIM J H, MANTHIRAM A. Layered NdBaCo2-xNixO5+δ perovskite oxides as cathodes for intermediate temperature solid oxide fuel cells. Electrochimica Acta, 2009, 54(28):7551.
DOI URL |
[27] |
ZHAO Z, CHEN H, XIANG H, et al. High entropy defective fluorite structured rare-earth niobates and tantalates for thermal barrier applications. Journal of Advanced Ceramics, 2020, 9(3):303.
DOI |
[28] |
LEE S J, KIM D S, JO S H, et al. Electrochemical properties of GdBaCo2/3Fe2/3Cu2/3O5+δ-CGO composite cathodes for solid oxide fuel cell. Ceramics International, 2012, 38: S493.
DOI URL |
[29] |
LI S, ZHANG L, XIA T, et al. Synergistic effect study of EuBa0.98Co2O5+δ-Ce0.8Sm0.2O1.9 composite cathodes for intermediate- temperature solid oxide fuel cells. Journal of Alloys and Compounds, 2019, 771: 513.
DOI URL |
[30] |
YANG Y, LIU Y, CHEN Z, et al. Enhanced conversion efficiency and coking resistance of solid oxide fuel cells with vertical- microchannel anode fueled in CO2 assisted low-concentration coal-bed methane. Separation and Purification Technology, 2022, 288: 120665.
DOI URL |
[31] | DAI T, SUN B, YI Q, et al.The effect of pore former on the microstructure and performance of SOFC cathode. Guangzhou Chemical Industry, 2013, 41: 7. |
[32] |
LI T, YANG Y, WANG X, et al. Enhance coking tolerance of high-performance direct carbon dioxide-methane solid oxide fuel cells with an additional internal reforming catalyst. Journal of Power Sources, 2021, 512: 230533.
DOI URL |
[33] |
KORNELY M, MENZLER N, WEBER A, et al. Degradation of a high performance SOFC cathode by Cr-poisoning at OCV-conditions. Fuel Cells, 2013, 13(4):506.
DOI URL |
[34] |
LIU B, MUROYAMA H, MATSUI T, et al. Analysis of impedance spectra for segmented-in-series tubular solid oxide fuel cells. Journal of the Electrochemical Society, 2010, 157(12): B1858.
DOI URL |
[1] | XIA Tian, MENG Xie, LUO Ting, ZHAN Zhongliang. La 3+-substituted Sr2Fe1.5Ni0.1Mo0.4O6-δ as Anodes for Solid Oxide Fuel Cells [J]. Journal of Inorganic Materials, 2020, 35(5): 617-622. |
[2] | XIA Tian, MENG Xie, LUO Ting, ZHAN Zhong-Liang. Synthesis and Evaluation of Ca-doped Sr2Fe1.5Mo0.5O6-δ as Symmetrical Electrodes for High Performance Solid Oxide Fuel Cells [J]. Journal of Inorganic Materials, 2019, 34(10): 1109-1114. |
[3] | XIONG Ming-Wen, YIN Yi-Mei, YUAN Xian-Xia, MA Zi-Feng. Preparation and Performance of SrCo1-xGaxO3-δ Cathode Materials for Intermediate Temperature Solid Oxide Fuel Cells [J]. Journal of Inorganic Materials, 2013, 28(7): 713-719. |
[4] | HONG Tao, WANG Yao, XIA Chang-Rong. Nano-structure Effect on Solid State Fuel Cells Cathode Durability [J]. Journal of Inorganic Materials, 2013, 28(11): 1187-1194. |
[5] | GONG Xun, MENG Xiu-Xia, YANG Nai-Tao, TAN Xiao-Yao, YIN Yi-Mei, MA Zi-Feng. Electrolyte Thickness Control and Its Effect on YSZ/Ni-YSZ Dual-layer Hollow Fibres [J]. Journal of Inorganic Materials, 2013, 28(10): 1108-1114. |
[6] | GUO Wei-Min, PEI Jun-Yan, LIANG Hong-Yu, LIU Jiang. Preparation and Performance of Anode-supported LaGaO3-based Electrolyte Solid Oxide Fuel Cells with Sm-doped CeO2 Buffer Layers [J]. Journal of Inorganic Materials, 2011, 26(7): 685-690. |
[7] | DING Jiao,LIU Jiang,GUO Wei-Min. Research on the Performance of Sm0.2Ce0.8O1.9 (SDC) Prepared by Different Methods [J]. Journal of Inorganic Materials, 2009, 24(1): 152-156. |
[8] |
DI Jing,WANG Cheng-Yang,CHEN Ming-Ming,ZHU Bin.
A Novel Composite Electrolyte Based on CeO2 for Low Temperature Solid Oxide Fuel Cells [J]. Journal of Inorganic Materials, 2008, 23(3): 573-577. |
[9] | PENG Lian,ZHU Qing-Shan,XIE Zhao-Hui,HUANG Wen-Lai. Thermal Stability Investigation of a Newly Developed Sealing Glass as IT-SOFC Sealant [J]. Journal of Inorganic Materials, 2006, 21(4): 867-872. |
[10] | ZHU Qing-Shan,PENG Lian,HUANG Wen-Lai,XIE Zhao-Hui. Present Status and Development Trends of Sealing Materials for Solid Oxide Fuel Cells [J]. Journal of Inorganic Materials, 2006, 21(2): 284-290. |
[11] | ZHENG Rui,NIE Huai-Wen,WANG Da-Qian,LU Zhi-Yi,WEN Ting-Lian. SiO2-CaO-B2O3-Al2O3 Glass Ceramics as Sealant for Planar Intermediate Temperature Solid Oxide Fuel Cells [J]. Journal of Inorganic Materials, 2004, 19(1): 37-42. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||