Journal of Inorganic Materials ›› 2025, Vol. 40 ›› Issue (5): 521-528.DOI: 10.15541/jim20240441
• RESEARCH ARTICLE • Previous Articles Next Articles
PAN Yuzhou(), HE Fajian, XU Lulu, DAI Shixun(
)
Received:
2024-10-24
Revised:
2024-12-22
Published:
2025-05-20
Online:
2025-01-09
Contact:
DAI Shixun, professor. E-mail: daishixun@nbu.edu.cnAbout author:
PAN Yuzhou (1993-), male, Master candidate. E-mail: 1907662346@qq.com
Supported by:
CLC Number:
PAN Yuzhou, HE Fajian, XU Lulu, DAI Shixun. Broadband 3 μm Mid-infrared Emission in Dy3+/Yb3+ Co-doped Tellurite Glass under 980 nm LD Excitation[J]. Journal of Inorganic Materials, 2025, 40(5): 521-528.
Component element | Mass percentage/% | Test percentage/% |
---|---|---|
Te | 70.80 | 70 |
Zn | 12.80 | 13 |
La | 11.00 | 11 |
Dy | 2.64 | 3 |
Yb | 2.76 | 3 |
Table 1 Nominal and actual composition of TZL-Dy/Yb sample
Component element | Mass percentage/% | Test percentage/% |
---|---|---|
Te | 70.80 | 70 |
Zn | 12.80 | 13 |
La | 11.00 | 11 |
Dy | 2.64 | 3 |
Yb | 2.76 | 3 |
Glass | Ωt/(×10-20, cm2) | Ω4/Ω6 | Ref. | ||
---|---|---|---|---|---|
Ω2 | Ω4 | Ω6 | |||
80(0.8GeS2·0.2Ga2S3)·20CdI2 | 14.26 | 1.10 | 2.73 | 0.40 | [ |
ZBLAY | 3.16 | 1.67 | 2.45 | 0.68 | [ |
LiYF4 crystal | 2.01 | 1.34 | 2.39 | 0.56 | [ |
70TeO2-25ZnO-5La2O3 | 3.54 | 0.76 | 1.10 | 0.69 | This work |
Table 2 J-O intensities, parameters Ωt (t=2, 4, 6) of Dy3+ in various glasses
Glass | Ωt/(×10-20, cm2) | Ω4/Ω6 | Ref. | ||
---|---|---|---|---|---|
Ω2 | Ω4 | Ω6 | |||
80(0.8GeS2·0.2Ga2S3)·20CdI2 | 14.26 | 1.10 | 2.73 | 0.40 | [ |
ZBLAY | 3.16 | 1.67 | 2.45 | 0.68 | [ |
LiYF4 crystal | 2.01 | 1.34 | 2.39 | 0.56 | [ |
70TeO2-25ZnO-5La2O3 | 3.54 | 0.76 | 1.10 | 0.69 | This work |
Transition | A/s-1 | β/% | τ/ms |
---|---|---|---|
6H13/2→6H15/2 | 51.44 | 100 | 19.44 |
6H11/2→6H13/2 | 14.77 | 12 | - |
→6H15/2 | 110.22 | 88 | 8.00 |
6H9/2→6H11/2 | 6.20 | 6 | - |
→6H13/2 | 31.31 | 30 | - |
→6H15/2 | 65.59 | 64 | 9.70 |
Table 3 Radiative spectral parameters of Dy3+ ions in TZL-Dy sample
Transition | A/s-1 | β/% | τ/ms |
---|---|---|---|
6H13/2→6H15/2 | 51.44 | 100 | 19.44 |
6H11/2→6H13/2 | 14.77 | 12 | - |
→6H15/2 | 110.22 | 88 | 8.00 |
6H9/2→6H11/2 | 6.20 | 6 | - |
→6H13/2 | 31.31 | 30 | - |
→6H15/2 | 65.59 | 64 | 9.70 |
Fig. 8 Fluorescence decay curves of Yb3+: 2F5/2 level and Dy3+: 6H13/2 level in each sample (a, b) Yb3+: 2F5/2 in (a) TZL-Yb and (b) TZL-Dy/Yb samples; (c, d) Dy3+: 6H13/2 in (c) TZL-Dy and (d) TZL-Dy/Yb samples
Energy transfer | Phonon number (N), contribution ratio/% | CD-A/(×10-40, cm6·s-1) | RC/nm | |||
---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | |||
ET1 (Yb3+: 2F5/2→Dy3+: 6F7/2) | 99.92 | 0.08 | 0 | 0 | 0.82 | 0.700 |
ET2 (Yb3+: 2F5/2→Dy3+: 6H7/2, 6F9/2) | 11.49 | 85.50 | 3.01 | 0 | 9.36 | 1.050 |
ET3 (Yb3+: 2F5/2→Dy3+: 6H9/2, 6F11/2) | 0 | 0 | 55.61 | 44.39 | 1.35 | 0.760 |
Table 4 Energy transfer micro-coefficient, critical radius, phonon number and contribution ratio in energy transfers between Yb3+ and Dy3+ ions
Energy transfer | Phonon number (N), contribution ratio/% | CD-A/(×10-40, cm6·s-1) | RC/nm | |||
---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | |||
ET1 (Yb3+: 2F5/2→Dy3+: 6F7/2) | 99.92 | 0.08 | 0 | 0 | 0.82 | 0.700 |
ET2 (Yb3+: 2F5/2→Dy3+: 6H7/2, 6F9/2) | 11.49 | 85.50 | 3.01 | 0 | 9.36 | 1.050 |
ET3 (Yb3+: 2F5/2→Dy3+: 6H9/2, 6F11/2) | 0 | 0 | 55.61 | 44.39 | 1.35 | 0.760 |
Fig. 11 Spectral overlap of Yb3+: 2F5/2→2F7/2 emission cross-section, emission sidebands, and various absorption cross-sections of Dy3+ in TZL-Dy/Yb sample (a) Dy3+: 6H15/2→6F7/2; (b) Dy3+: 6H15/2→6H7/2, 6F9/2; (c) Dy3+: 6H15/2→6H9/2, 6F11/2
[1] | ZHANG Y, XIA L Z, LI C Y, et al. Enhanced 2.7 µm mid-infrared emission in Er3+/Ho3+ co-doped tellurite glass. Optics and Laser Technology, 2021, 138: 106913. |
[2] | WANG C Z, TIAN Y, GAO X Y, et al. Investigation of broadband mid-infrared emission and quantitative analysis of Dy-Er energy transfer in tellurite glasses under different excitations. Optics Express, 2017, 25(23): 29512. |
[3] | FENG S H, LIU C Z, ZHU J, et al. Realizing particle population inversion of 2.7 μm emission in heavy Er3+/Pr3+ co-doped low hydroxyl fluorotellurite glass for mid-infrared laser. Ceramics International, 2023, 49: 20372. |
[4] | 王森宇, 陈俊生, 赵鑫生, 等. 3-5 μm稀土离子掺杂中红外光纤激光器的研究进展(特邀). 红外与激光工程, 2023, 52(5): 20230215. |
[5] | TOBBEN H. Room temperature CW fiber laser at 3.5 μm in Er3+-doped ZBLAN glass. Electronics Letters, 1992, 28(14): 1361. |
[6] | AYDIN Y O, FORTIN V, VALLEE R, et al. Towards power scaling of 2.8 μm fiber lasers. Optics Letters, 2018, 43(18): 4542. |
[7] | 尹朋伟, 李彦潮, 赵文凯, 等. 中红外稀土掺杂碲酸盐玻璃和光纤. 发光学报, 2022, 43(11): 1705. |
[8] | EI-MALLAWANY R A H. Tellurite glasses handbook: physical properties and data. Boca Raton: CRC press, 2001: 1-50. |
[9] | TIAN Y, XU R R, HU L L, et al. Broadband 2.84 μm luminescence properties and Judd-Ofelt analysis in Dy3+ doped ZrF4-BaF2- LaF3-AlF3-YF3 glass. Journal of Luminescence, 2012, 132: 128. |
[10] | GAO X Q, FANG G Y, WANG Y, et al. Visible and mid-infrared spectral performances of Dy3+: CaF2 and Dy3+/Y3+: CaF2 crystals. Journal of Alloys and Compounds, 2021, 856: 158083. |
[11] | 万瑞, 杨利青, 霍伟荣, 等. 中红外碲酸盐玻璃及光纤研究进展. 硅酸盐通报, 2022, 41(8): 2589. |
[12] | ALVES R T. Raman and optical spectroscopy studies in Tm3+/Dy3+-codoped zinc tellurite glasses. Journal of Luminescence, 2021, 230: 117738. |
[13] | NEDELCHEVA A B, IORDANOVA R, GANEV S, et al. Glass formation and structural studies of glasses in the TeO2-ZnO- Bi2O3-Nb2O5 system. Journal of Non-Crystalline Solids, 2019, 503: 224. |
[14] | FARES H, JLASSI I, ELHOUICHET H, et al. Investigations of thermal, structural and optical properties of tellurite glass with WO3 adding. Journal of Non-Crystalline Solids, 2014, 396: 1. |
[15] | KOROLEVA O N, SHTENBERG M V, IVANOVA T N. The structure of potassium germanate glasses as revealed by Raman and IR spectroscopy. Journal of Non-Crystalline Solids, 2019, 510: 143. |
[16] | 周凌峰. 掺稀土氟化物玻璃组分设计及3 μm中红外光谱特性的研究. 杭州: 中国计量大学硕士学位论文, 2020. |
[17] | CAI M Z, ZHOU B, TIAN Y, et al. Broadband mid-infrared 2.8 μm emission in Ho3+/Yb3+-codoped germanate glasses. Journal of Luminescence, 2016, 171: 143. |
[18] | QI F W, ZHOU L F, TIAN Y, et al. Low-hydroxy Dy3+/Nd3+ co-doped fluoride glass for broadband 2.9 µm luminescence properties. Journal of Luminescence, 2017, 190: 392. |
[19] | JUDD B R. Optical absorption intensities of rare-earth ions. Physical Review, 1962, 127(3): 750. |
[20] | BRIK M G, ISHII T, TKACHUK A M, et al. Calculations of the transitions intensities in the optical spectra of Dy3+: LiYF4. Journal of Alloys and Compounds, 2004, 374: 63. |
[21] | GUO H T, LIU L, WANG Y Q, et al. Host dependence of spectroscopic properties of Dy3+-doped and Dy3+, Tm3+-codped Ge-Ga-S-CdI2 chalcohalide glasses. Optics Express, 2009, 17(17): 15350. |
[22] | SONG C L, ZHOU D C, XU P F, et al. Enhanced 3 μm luminescence in Ho3+/Yb3+ co-doped bismuth-tellurite glass by controlled structure network topology. Journal of Non-Crystalline Solids, 2022, 597: 121919. |
[23] | QI F W, HUANG F F, WANG T, et al. Enhanced 3 μm luminescence properties based on effective energy transfer Yb3+: 2F5/2→Dy3+: 6H5/2 in fluoaluminate glass modified by TeO2. Applied Optics, 2017, 56(31): H24. |
[24] | SHEN L L, WANG N, DOU A J, et al. Broadband -3 μm mid-infrared emission in Dy3+/Yb3+ co-doped germanate glasses. Optical Materials, 2018, 75: 274. |
[25] | ZHANG P X, XU M, ZHANG L H, et al. Intense 2.89 μm emission from Dy3+/Yb3+-codoped PbF2 crystal by 970 nm laser diode pumping. Optics Express, 2015, 23(21): 27786. |
[26] | 戴世勋, 杨建虎, 戴能利, 等. 荧光捕获效应对Yb3+磷酸盐玻璃光谱性质的影响. 物理学报, 2003, 52(6): 1533. |
[27] | CAI X Y, WANG Y, LI J F, et al. Enhanced broadband 3 μm emission in Yb3+/Dy3+: YAlO3 crystal under 979 nm excitation. Vacuum, 2020, 181: 109647. |
[28] | PAYNE S A, CHASE L L, SMITH L K, et al. Infrared cross- section measurements for crystals doped with Er3+, Tm3+, and Ho3+. IEEE Journal of Quantum Electronics, 1992, 28(11): 2619. |
[29] | MCCUMBER D E. Theory of phonon-terminated optical masers. Physical Review, 1964, 134(2A): A299. |
[30] | HANG L Y, ZHANG J J, YU C L, et al. A method for emission cross section determination of Tm3+ at 2.0 μm emission. Journal of Applied Physics, 2010, 108: 103117. |
[31] | BOUDEIF Y M, YOUSEF E S, MARZOUK S Y, et al. Investigation of luminescence parameters of novel glasses with composition TeO2-ZnO-NaF-MoO2-Er2O3 as laser material. Journal of Non-Crystalline Solids, 2018, 498: 72. |
[32] | MIYAKAWA T, DEXTER D L. Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids. Physical Review B, 1970, 1(7): 2961. |
[33] | DEXTER D L. A theory of sensitized luminescence in solids. The Journal of Chemical Physics, 1953, 21(5): 836. |
[1] | TAM YU Puy Mang, XU Yu, GAO Quanhao, ZHOU Haiqiong, ZHANG Zhen, YIN Hao, LI Zhen, LÜ Qitao, CHEN Zhenqiang, MA Fengkai, SU Liangbi. Spectroscopic Properties and Optical Clusters in Erbium-doped CaF2, SrF2 and PbF2 Crystals [J]. Journal of Inorganic Materials, 2024, 39(3): 330-336. |
[2] | QIAN Xinyu, WANG Wudi, SONG Qingsong, DONG Yongjun, XUE Yanyan, ZHANG Chenbo, WANG Qingguo, XU Xiaodong, TANG Huili, CAO Guixin, XU Jun. Luminescence Property and Judd-Ofelt Analysis of 0.6%Pr, x%La:CaF2 Crystals [J]. Journal of Inorganic Materials, 2023, 38(3): 357-362. |
[3] | YU Chun-Feng, ZHANG Xiang-Qing, HAN Wen-Yan, ZHANG Jin-Su, LI Xiang-Ping, XU Sai, CHEN Bao-Jiu. Calculation of Judd-Ofelt Parameters for Lu2O3:Er3+ Phosphor [J]. Journal of Inorganic Materials, 2019, 34(2): 213-218. |
[4] | LI Gui-Fang, YANG Qian, WEI Yun-Ge. Synthesis and Photoluminescence Properties of Double Perovskite NaLaMgWO6: Eu3+ Red Phosphor [J]. Journal of Inorganic Materials, 2017, 32(9): 936-942. |
[5] | GUO Wei, ZHANG Bin, ZHAI Cheng-Cheng, QI Si-Sheng, YU Yi, YANG An-Ping, LI Lei, YANG Zhi-Yong, WANG Rong-Ping, TANG Ding-Yuan, TAO Guang-Ming, LUTHER-DAVIES Barry. Fabrication and Application of Small Core Chalcogenide Glass Fibers in Nonlinear Optics [J]. Journal of Inorganic Materials, 2016, 31(2): 180-184. |
[6] | YU Xing-Yan, CHEN Hong-Bing, WANG Shu-Jing, ZHOU Yan-Fei, WU An-Hua, DAI Shi-Xun. Growth and Spectral Properties of Er3+;LiYF4 Single Crystal [J]. Journal of Inorganic Materials, 2011, 26(9): 923-928. |
[7] | SUN Jie, NIE Qiu-Hua, DAI Shi-Xun, WU Li-Gang, SONG Bao-An, CHEN Fei-Fei, WANG Guo-Xiang, XU Tie-Feng. Effect of OH- Content on Mid-infrared Emission Properties in Er3+-doped Ge-Ga-S-CsI Glasses [J]. Journal of Inorganic Materials, 2011, 26(8): 836-840. |
[8] | ZHU Jun1, DAI ShiXun1,2, PENG Bo2, XU TieFeng1, WANG XunSi1, ZHANG XiangHua1,3. Mid-infrared Emission Properties of Ho3+-doped Ge-Ga-S-CsI Glasses [J]. Journal of Inorganic Materials, 2010, 25(5): 546-550. |
[9] | ZHANG Yan, WANG Guo-Fu, LIN Zhou-Bin, HU Zu-Shu. Optical Parameters of Nd3+ Ion in Sr3Gd2(BO3)4 Crystal [J]. Journal of Inorganic Materials, 2010, 25(10): 1110-1114. |
[10] | LI Jiang,YANG Zhi-Yong,WU Yu-Song,LIU Wen-Bin,PAN Yu-Bai,HUANG Li-Ping,GUO Jing-Kun. Spectroscopic Properties and Judd-Ofelt Theory Analysis of Nd:YAG Transparent Laser Ceramic [J]. Journal of Inorganic Materials, 2008, 23(3): 429-433. |
[11] | CHEN Bing-Yan,LIU Yue-Hui,CHEN Dong-Dan,JIANG Zhong-Hong. Thermal Stability and Spectroscopic Properties of Erbium-doped Tellurite Glass [J]. Journal of Inorganic Materials, 2005, 20(3): 550-556. |
[12] | ZHU Ji-Qian,HE Yun-Fen,LI Zhi-Guo. Spectrum Properties of 20GaF3-15InF3-20CdF2-15ZnF2-18PbF2-10SnF2-2TmF3 Glass [J]. Journal of Inorganic Materials, 2005, 20(2): 274-278. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||