Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (6): 606-618.DOI: 10.15541/jim20220601
• REVIEW • Previous Articles Next Articles
LIN Junliang1(), WANG Zhanjie2()
Received:
2022-10-13
Revised:
2022-11-14
Published:
2023-02-07
Online:
2023-02-07
Contact:
WANG Zhanjie, professor. E-mail: wangzj@imr.ac.cnAbout author:
LIN Junliang (1991-), male, PhD, lecturer. E-mail: jllin14s@163.com
Supported by:
CLC Number:
LIN Junliang, WANG Zhanjie. Research Progress on Ferroelectric Superlattices[J]. Journal of Inorganic Materials, 2023, 38(6): 606-618.
Fig. 2 Schematic diagrams of topological polar structures found in ferroelectric/paraelectric superlattices[28] (a, b) Maps of the polar atomic displacement vectors showing the flux-closure array in the PbTiO3 layer; (c) Schematics of four newly identified topological polar structures in ferroelectric films
Fig. 3 Position dependence of average net polarization and oxygen vacancy formation energy calculated from the first principles when an oxygen vacancy is introduced into the (SrTiO3)9/(SrRuO3)1 superlattice[56] (a) Average net polarization; (b) Oxygen vacancy formation energy
Fig. 4 STEM images and ferroelectric properties of the (SrTiO3)25/(SrRuO3)2 superlattice[59] (a, b) Low-magnification and high-magnification HAADF-STEM images; (c-g) Atomically resolved EDS mappings; (h-j) Polar vector distribution; (k-m) Ferroelectric properties
Fig. 5 BaTiO3/SrTiO3/CaTiO3 tricolor superlattices[10] (a) Cross-sectional atomic number (Z)-contrast scanning transmission electron microscopy (Z-STEM) image and atomic structure diagram; (b, c) P-E hysteresis loops, lattice constants and polarizations with different period thicknesses Colorful figures are available on website
Fig. 6 Polarization properties of the (BaTiO3)n/(SrTiO3)n superlattices under different period thicknesses[90] (a) BaTiO3 c-axis parameter and remnant polarization as a function of the number (n) of unit cells in (BaTiO3)n/(SrTiO3)n superlattice; (b) Remnant polarization as a function of the c-axis parameter of BaTiO3; (c) Sketch of possible ferroelectric domains with different superlattice period thicknesses 1 Å = 0.1 nm
Fig. 7 180° domain structures in the (PbTiO3)n/(SrTiO3)n superlattices[95] (a) Schematic diagram of the 180° domain structure; (b) Reciprocal space map; (c) Domain periodicities along the [100] direction as a function of PbTiO3 layer thickness 1 Å = 0.1 nm
Fig. 8 Electrical properties of the BaTiO3/Pb(Zr0.52Ti0.48)O3 ferroelectric superlattice[9] (a) Schematic diagram of space charges accumulation; (b) Dielectric properties; (c) Leakage current curves; (d) P-E hysteresis loops
Fig. 9 BaTiO3/LaNiO3[61] and PbZr0.52Ti0.48O3/SrRuO3[62] superlattices with different metallic layer thicknesses (a, b) P-E hysteresis loops and leakage current curves of the BaTiO3/LaNiO3 superlattices with different LaNiO3 thicknesses; (c) TEM, (d) HRTEM images and (e) P-E hysteresis loops of the PbZr0.52Ti0.48O3/SrRuO3 superlattices with different SrRuO3 thicknesses Colorful figures are available on website
[1] |
MARTIN L W, RAPPE A M. Thin-film ferroelectric materials and their applications. Nature Reviews Materials, 2016, 2(2):16087.
DOI |
[2] |
WANG Z J, BAI Y. Resistive switching behavior in ferroelectric heterostructures. Small, 2019, 15(32):1805088.
DOI URL |
[3] |
KIM J Y, CHOI M J, JANG H W. Ferroelectric field effect transistors: progress and perspective. APL Materials, 2021, 9(2):021102.
DOI URL |
[4] |
LEE Y C, TSAI C C, LI C Y, et al. Fabrication and function examination of PZT-based MEMS accelerometers. Ceramics International, 2021, 47(17):24458.
DOI URL |
[5] |
RAMESH R, SCHLOM D G. Creating emergent phenomena in oxide superlattices. Nature Reviews Materials, 2019, 4: 257.
DOI |
[6] |
DAWBER M, BOUSQUET E. New developments in artificially layered ferroelectric oxide superlattices. MRS Bulletin, 2013, 38(12):1048.
DOI URL |
[7] |
TENNE D A, BRUCHHAUSEN A, LANZILLOTTI-KIMURA N D, et al. Probing nanoscale ferroelectricity by ultraviolet Raman spectroscopy. Science, 2006, 313(5793):1614.
PMID |
[8] |
SEO S S A, LEE J H, LEE H N, et al. Ferroelectricity in artificial bicolor oxide superlattices. Advanced Materials, 2007, 19(18):2460.
DOI URL |
[9] | HE B, WANG Z. Enhancement of the electrical properties in BaTiO3/PbZr0.52Ti0.48O3 ferroelectric superlattices. ACS Applied Materials & Interfaces, 2016, 8(10):6736. |
[10] |
LEE H N, CHRISTEN H M, CHISHOLM M F, et al. Strong polarization enhancement in asymmetric three-component ferroelectric superlattices. Nature, 2005, 433(7024):395.
DOI |
[11] |
HONG L, WU P, LI Y, et al. Piezoelectric enhancement of (PbTiO3)m/(BaTiO3)n ferroelectric superlattices through domain engineering. Physical Review B, 2014, 90(17):174111.
DOI URL |
[12] |
WANG Z, CAO H, LIU Q, et al. The enhanced ferroelectricity in Sr1-δTiO3/BaTiO3superlattices with Sr deficiency. Journal of Physics D: Applied Physics, 2020, 53(31):314004.
DOI URL |
[13] |
BOUSQUET E, DAWBER M, STUCKI N, et al. Improper ferroelectricity in perovskite oxide artificial superlattices. Nature, 2008, 452(7188):732.
DOI |
[14] |
XU B, WANG D, ZHAO H J, et al. Hybrid improper ferroelectricity in multiferroic superlattices: finite-temperature properties and electric-field-driven switching of polarization and magnetization. Advanced Functional Materials, 2015, 25(24):3626.
DOI URL |
[15] |
RAVICHANDRAN J, YADAV A K, CHEAITO R, et al. Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices. Nature Materials, 2014, 13(2):168.
DOI PMID |
[16] |
CAO Y, WANG Z, PARK S Y, et al. Artificial two-dimensional polar metal at room temperature. Nature Communications, 2018, 9(1):1547.
DOI PMID |
[17] |
YE M, HU S, ZHU Y, et al. Electric polarization switching on an atomically thin metallic oxide. Nano Letters, 2021, 21(1):144.
DOI PMID |
[18] |
NIRANJAN M K, WANG Y, JASWAL S S, et al. Prediction of a switchable two-dimensional electron gas at ferroelectric oxide interfaces. Physical Review Letters, 2009, 103(1):016804.
DOI URL |
[19] |
VERISSIMO-ALVES M, GARCIA-FERNANDEZ P, BILC D I, et al. Highly confined spin-polarized two-dimensional electron gas in SrTiO3/SrRuO3 superlattices. Physical Review Letters, 2012, 108(10):107003.
DOI URL |
[20] |
OHTA H, KIM S, MUNE Y, et al. Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. Nature Materials, 2007, 6(2):129.
PMID |
[21] | ZHOU P X, LIU H M, YAN Z B, et al. Magnetic properties and electronic structures of (YTiO3)2/(BaTiO3)n superlattices. Journal of Applied Physics, 2014, 115(17): 17D710. |
[22] |
ZUBKO P, WOJDEŁ J C, HADJIMICHAEL M, et al. Negative capacitance in multidomain ferroelectric superlattices. Nature, 2016, 534(7608):524.
DOI |
[23] |
GAO W, KHAN A, MARTI X, et al. Room-temperature negative capacitance in a ferroelectric-dielectric superlattice heterostructure. Nano Letters, 2014, 14(10):5814.
DOI PMID |
[24] |
GRAF M, ARAMBERRI H, ZUBKO P, et al. Giant voltage amplification from electrostatically induced incipient ferroelectric states. Nature Materials, 2022, 21(11):1252.
DOI PMID |
[25] |
YADAV A K, NELSON C T, HSU S L, et al. Observation of polar vortices in oxide superlattices. Nature, 2016, 530(7589):198.
DOI |
[26] |
HONG Z, CHEN L Q. Switchable polar spirals in tricolor oxide superlattices. Acta Materialia, 2019, 164:493.
DOI |
[27] |
DAS S, TANG Y L, HONG Z, et al. Observation of room- temperature polar skyrmions. Nature, 2019, 568(7752):368.
DOI |
[28] |
TANG Y L, ZHU Y L, MA X L. Topological polar structures in ferroelectric oxide films. Journal of Applied Physics, 2021, 129(20):200904.
DOI URL |
[29] |
HONG Z, DAMODARAN A R, XUE F, et al. Stability of polar vortex lattice in ferroelectric superlattices. Nano Letters, 2017, 17(4):2246.
DOI PMID |
[30] |
JANG H W, KUMAR A, DENEV S, et al. Ferroelectricity in strain-free SrTiO3 thin films. Physical Review Letters, 2010, 104(19):197601.
DOI URL |
[31] |
LUO B, WANG X, TIAN E, et al. Electronic structure, optical and dielectric properties of BaTiO3/CaTiO3/SrTiO3 ferroelectric superlattices from first-principles calculations. Journal of Materials Chemistry C, 2015, 3(33):8625.
DOI URL |
[32] |
TABATA H, TANAKA H, KAWAI T. Formation of artificial BaTiO3/SrTiO3 superlattices using pulsed laser deposition and their dielectric properties. Applied Physics Letters, 1994, 65(15): 1970.
DOI URL |
[33] |
DAS S, HONG Z, MCCARTER M, et al. A new era in ferroelectrics. APL Materials, 2020, 8(12):120902.
DOI URL |
[34] |
DAS S, GHOSH A, MCCARTER M R, et al. Perspective: emergent topologies in oxide superlattices. APL Materials, 2018, 6(10):100901.
DOI URL |
[35] |
BENYOUSSEF M, BELHADI J, LAHMAR A, et al. Tailoring the dielectric and energy storage properties in BaTiO3/BaZrO3 superlattices. Materials Letters, 2019, 234: 279.
DOI URL |
[36] |
SUN Z, MA C, LIU M, et al. Ultrahigh energy storage performance of lead-free oxide multilayer film capacitors via interface engineering. Advanced Materials, 2017, 29(5):1604427.
DOI URL |
[37] |
ARAMBERRI H, FEDOROVA N S, INIGUEZ J. Ferroelectric/ paraelectric superlattices for energy storage. Science Advances, 2022, 8(31):eabn4880.
DOI URL |
[38] |
YUN Y, MUHLENBEIN L, KNOCHE D S, et al. Strongly enhanced and tunable photovoltaic effect in ferroelectric- paraelectric superlattices. Science Advances, 2021, 7(23):eabe4206.
DOI URL |
[39] |
JI Y, CHEN W J, ZHENG Y. The emergence of tunable negative electrocaloric effect in ferroelectric/paraelectric superlattices. Journal of Physics D: Applied Physics, 2020, 53(50):505302.
DOI |
[40] |
LIN J L, WANG Z J, ZHAO X, et al. Microstructures and ferroelectric properties of PbTiO3/PbZrO3 superlattices deposited by pulse laser deposition. Ceramics International, 2018, 44(17):20664.
DOI URL |
[41] |
CHOI T, LEE J. Structural and dielectric properties of artificial PbZrO3/PbTiO3 superlattices grown by pulsed laser deposition. Thin Solid Films, 2005, 475(1/2):283.
DOI URL |
[42] |
BASTANI Y, BASSIRI-GHARB N. Enhanced dielectric and piezoelectric response in PZT superlattice-like films by leveraging spontaneous Zr/Ti gradient formation. Acta Materialia, 2012, 60(3):1346.
DOI URL |
[43] |
VREJOIU I, ZHU Y, LE RHUN G, et al. Structure and properties of epitaxial ferroelectric PbZr0.4Ti0.6O3/PbZr0.6Ti0.4O3 superlattices grown on SrTiO3 (001) by pulsed laser deposition. Applied Physics Letters, 2007, 90(7):072909.
DOI URL |
[44] |
LUPI E, GHOSH A, SAREMI S, et al. Large polarization and susceptibilities in artificial morphotropic phase boundary PbZr1-xTixO3 superlattices. Advanced Electronic Materials, 2020, 6(3):1901395.
DOI URL |
[45] |
LU Y. Dielectric and ferroelectric behaviors in Pb(Mg1/3Nb2/3)O3- PbTiO3 rhombohedral/tetragonal superlattices. Applied Physics Letters, 2004, 85(6):979.
DOI URL |
[46] | LIN Q, WANG D, CHEN Z, et al. Periodicity dependence of the built-in electric field in (Ba0.7Ca0.3)TiO3/Ba(Zr0.2Ti0.8)O3 ferroelectric superlattices. ACS Applied Materials & Interfaces, 2015, 7(47):26301. |
[47] |
KANNO I, HAYASHI S, TAKAYAMA R, et al. Superlattices of PbZrO3 and PbTiO3 prepared by multi-ion-beam sputtering. Applied Physics Letters, 1996, 68(3):328.
DOI URL |
[48] |
LIANG Y C, LIANG Y C. Effects of substrate temperature on the physical properties of strained BaTiO3/LaNiO3 artificial superlattices. Journal of Crystal Growth, 2005, 285(3):345.
DOI URL |
[49] |
TSENG J Y, WU T B. Dielectric enhancement in (001)-textured BaTiO3/LaNiO3superlattice. Materials Chemistry and Physics, 2004, 88(2/3):433.
DOI URL |
[50] |
XIA J, SIEMONS W, KOSTER G, et al. Critical thickness for itinerant ferromagnetism in ultrathin films of SrRuO3. Physical Review B, 2009, 79(14):140407(R).
DOI URL |
[51] |
SCHERWITZL R, GARIGLIO S, GABAY M, et al. Metal- insulator transition in ultrathin LaNiO3 films. Physical Review Letters, 2011, 106(24):246403.
DOI URL |
[52] |
LIAO Z, LI F, GAO P, et al. Origin of the metal-insulator transition in ultrathin films of La2/3Sr1/3MnO3. Physical Review B, 2015, 92(11):125123.
DOI URL |
[53] |
CALLORI S J, GABEL J, SU D, et al. Ferroelectric PbTiO3/ SrRuO3 superlattices with broken inversion symmetry. Physical Review Letters, 2012, 109(6):067601.
DOI URL |
[54] |
ROWLEY S E, SPALEK L J, SMITH R P, et al. Ferroelectric quantum criticality. Nature Physics, 2014, 10(5):367.
DOI |
[55] |
YIN L H, SHI T F, ZHANG R R, et al. Electric dipoles via Cr3+(d3) ion off-center displacement in perovskite DyCrO3. Physical Review B, 2018, 98(5):054301.
DOI URL |
[56] | HE R, LIN J L, LIU Q, et al. Emergent ferroelectricity in otherwise nonferroelectric oxides by oxygen vacancy design at heterointerfaces. ACS Applied Materials & Interfaces, 2020, 12(40):45602. |
[57] |
TSURUMI T, HARIGAI T, TANAKA D, et al. Artificial ferroelectricity in perovskite superlattices. Applied Physics Letters, 2004, 85(21):5016.
DOI URL |
[58] |
YANG K, WANG C, LI J, et al. Structural and polarization properties of short-period SrZrO3/SrTiO3superlattices. Physical Review B, 2007, 75(22):224117.
DOI URL |
[59] |
LIN J L, SUN Y, HE R, et al. Colossal room-temperature ferroelectric polarizations in SrTiO3/SrRuO3 superlattices induced by oxygen vacancies. Nano Letters, 2022, 22(17):7104.
DOI URL |
[60] |
STARSCHICH S, MENZEL S, BÖTTGER U. Evidence for oxygen vacancies movement during wake-up in ferroelectric hafnium oxide. Applied Physics Letters, 2016, 108(3):032903.
DOI URL |
[61] |
LIN J L, WANG Z J, ZHAO X, et al. Significantly enhanced ferroelectric and dielectric properties in BaTiO3/LaNiO3 superlattices. Scripta Materialia, 2020, 179: 102.
DOI URL |
[62] |
LIN J L, WANG Z J, ZHAO X, et al. Effect of SrRuO3 layer thickness on electrical properties of Pb(Zr0.52Ti0.48)O3/SrRuO3 superlattices. Ceramics International, 2020, 46(7):9328.
DOI URL |
[63] |
O’NEILL D, BOWMAN R M, GREGG J M. Dielectric enhancement and Maxwell-Wagner effects in ferroelectric superlattice structures. Applied Physics Letters, 2000, 77(10):1520.
DOI URL |
[64] |
DARINSKII B M, SIDORKIN A S, SIGOV A S. Influence of misfit stresses on the dielectric permeability of ferroelectric superlattices BaTiO3/BaZrO3. Nanocomposites, 2021, 7(1):154.
DOI URL |
[65] |
CHEN M J, NING X K, WANG S F, et al. Enhanced polarization and dielectricity in BaTiO3:NiO nanocomposite films modulated by the microstructure. RSC Advances, 2017, 7(61):38231.
DOI URL |
[66] |
OKATAN M B, MISIRLIOGLU I B, ALPAY S P. Contribution of space charges to the polarization of ferroelectric superlattices and its effect on dielectric properties. Physical Review B, 2010, 82(9):094115.
DOI URL |
[67] |
HADJIMICHAEL M, LI Y, YEDRA L, et al. Domain structure and dielectric properties of metal-ferroelectric superlattices with asymmetric interfaces. Physical Review Materials, 2020, 4(9):094415.
DOI URL |
[68] |
PETROV P K, ZOU B, WANG Y, et al. STO/BTO modulated superlattice multilayer structures with atomically sharp interfaces. Advanced Materials Interfaces, 2014, 1(3):1300116.
DOI URL |
[69] |
KANNO I. Piezoelectric MEMS: ferroelectric thin films for MEMS applications. Japanese Journal of Applied Physics, 2018, 57(4):040101.
DOI URL |
[70] |
SINSHEIMER J, CALLORI S J, BEIN B, et al. Engineering polarization rotation in a ferroelectric superlattice. Physical Review Letters, 2012, 109(16):167601.
DOI URL |
[71] |
COOPER V R, RABE K M. Enhancing piezoelectricity through polarization-strain coupling in ferroelectric superlattices. Physical Review B, 2009, 79(18):180101(R).
DOI URL |
[72] |
SHARMA N D, LANDIS C M, SHARMA P. Piezoelectric thin- film superlattices without using piezoelectric materials. Journal of Applied Physics, 2010, 108(2):024304.
DOI URL |
[73] |
JIN C, GENG W, WANG L, et al. Tuning ferroelectricity and ferromagnetism in BiFeO3/BiMnO3 superlattices. Nanoscale, 2020, 12(17):9810.
DOI URL |
[74] |
GUO M, TAN G, YANG W, et al. Resistive switching and ferroelectric properties in BiFeO3 superlattice films. Materials Letters, 228: 13.
DOI URL |
[75] |
CUI Z, GRUTTER A J, ZHOU H, et al. Correlation-driven eightfold magnetic anisotropy in a two-dimensional oxide monolayer. Science Advances, 2020, 6(15):eaay0114.
DOI URL |
[76] | JEONG S G, HAN G, SONG S, et al. Propagation control of octahedral tilt in SrRuO3 via artificial heterostructuring. Advanced Science, 2020: 2001643. |
[77] |
GU M, XIE Q, SHEN X, et al. Magnetic ordering and structural phase transitions in a strained ultrathin SrRuO3/SrTiO3 superlattice. Physical Review Letters, 2012, 109(15):157003.
DOI URL |
[78] |
GARCÍA-FERNÁNDEZ P, VERISSIMO-ALVES M, BILC D I, et al. First-principles modeling of the thermoelectric properties of SrTiO3/SrRuO3superlattices. Physical Review B, 2012, 86(8):085305.
DOI URL |
[79] |
CHOI K J. Enhancement of ferroelectricity in strained BaTiO3 thin films. Science, 2004, 306(5698):1005.
DOI URL |
[80] |
SCHLOM D G, CHEN L Q, EOM C B, et al. Strain tuning of ferroelectric thin films. Annual Review of Materials Research, 2007, 37(1):589.
DOI URL |
[81] |
WARUSAWITHANA M P, KENGLE C S, ZHAN X, et al. Asymmetric ferroelectricity by design in atomic-layer superlattices with broken inversion symmetry. Physical Review B, 2021, 104(8):085103.
DOI URL |
[82] |
HWANG J, FENG Z, CHARLES N, et al. Tuning perovskite oxides by strain: electronic structure, properties, and functions in (electro)catalysis and ferroelectricity. Materials Today, 2019, 31: 100.
DOI URL |
[83] |
ZHU Z Y, WANG S Q, FU Y M. First-principles study of properties of strained PbTiO3/KTaO3 superlattice. Chinese Physics Letters, 2016, 33(2):026302.
DOI URL |
[84] |
RONDINELLI J M, FENNIE C J. Octahedral rotation-induced ferroelectricity in cation ordered perovskites. Advanced Materials, 2012, 24(15): 1961.
DOI URL |
[85] |
AGUADO-PUENTE P, GARCIA-FERNANDEZ P, JUNQUERA J. Interplay of couplings between antiferrodistortive, ferroelectric, and strain degrees of freedom in monodomain PbTiO3/SrTiO3 superlattices. Physical Review Letters, 2011, 107(21):217601.
DOI URL |
[86] |
NAKHMANSON S M, RABE K M, VANDERBILT D. Polarization enhancement in two- and three-component ferroelectric superlattices. Applied Physics Letters, 2005, 87(10):102906.
DOI URL |
[87] |
CHEN B, GAUQUELIN N, STRKALJ N, et al. Signatures of enhanced out-of-plane polarization in asymmetric BaTiO3 superlattices integrated on silicon. Nature Communications, 2022, 13(1):265.
DOI |
[88] |
ORTEGA N, KUMAR A, RESTO O, et al. Compositional engineering of BaTiO3/(Ba,Sr)TiO3 ferroelectric superlattices. Journal of Applied Physics, 2013, 114(10):104102.
DOI URL |
[89] |
BOLDYREVA K, PINTILIE L, LOTNYK A, et al. Thickness- driven antiferroelectric-to-ferroelectric phase transition of thin PbZrO3 layers in epitaxial PbZrO3/Pb(Zr0.8Ti0.2)O3 multilayers. Applied Physics Letters, 2007, 91(12):122915.
DOI URL |
[90] |
KHESTANOVA E, DIX N, FINA I, et al. Untangling electrostatic and strain effects on the polarization of ferroelectric superlattices. Advanced Functional Materials, 2016, 26(35):6446.
DOI URL |
[91] |
LIM K G, CHEW K H, WANG D Y, et al. Charge compensation phenomena for polarization discontinuities in ferroelectric superlattices. Europhysics Letters, 2014, 108(6):67011.
DOI URL |
[92] |
CHEW K H, LIM K G, ONG L H. Polarization discontinuity and interface charges in ferroelectric superlattices. Ferroelectrics, 2016, 490(1):149.
DOI URL |
[93] |
WU X, RABE K M, VANDERBILT D. Interfacial enhancement of ferroelectricity in CaTiO3/BaTiO3superlattices. Physical Review B, 2011, 83(2):020104(R).
DOI URL |
[94] |
SEO S S A, LEE H N. Strain-coupled ferroelectric polarization in BaTiO3-CaTiO3 superlattices. Applied Physics Letters, 2009, 94(23):232904.
DOI URL |
[95] |
ZUBKO P, JECKLIN N, TORRES-PARDO A, et al. Electrostatic coupling and local structural distortions at interfaces in ferroelectric/paraelectric superlattices. Nano Letters, 2012, 12(6):2846.
DOI PMID |
[96] |
AIDHY D S, RAWAT K. Coupling between interfacial strain and oxygen vacancies at complex-oxides interfaces. Journal of Applied Physics, 2021, 129(17):171102.
DOI URL |
[97] | LI W, ZHAO R, TANG R, et al. Vertical-interface-manipulated conduction behavior in nanocomposite oxide thin films. ACS Applied Materials & Interfaces, 2014, 6(8):5356. |
[98] |
LIU Y, ZHU Y L, TANG Y L, et al. Local enhancement of polarization at PbTiO3/BiFeO3 interfaces mediated by charge transfer. Nano Letters, 2017, 17(6):3619.
DOI URL |
[99] |
LIN J L, HE R, LU Z, et al. Oxygen vacancy enhanced ferroelectricity in BTO:SRO nanocomposite films. Acta Materialia, 2020, 199: 9.
DOI URL |
[100] |
COOPER V R, JOHNSTON K, RABE K M. Polarization enhancement in short period superlattices via interfacial intermixing. Physical Review B, 2007, 76(2):020103(R).
DOI URL |
[101] |
PERTSEV N A, TYUNINA M. Interfacial nanolayers and permittivity of ferroelectric superlattices. Journal of Applied Physics, 2011, 109(12):126101.
DOI URL |
[102] |
HUNG C L, CHUEH Y L, WU T B, et al. Characteristics of constrained ferroelectricity in PbZrO3/BaZrO3 superlattice films. Journal of Applied Physics, 2005, 97(3):034105.
DOI URL |
[103] |
ISHIBASHI Y, OHASHI N, TSURUMI T. Structural refinement of X-ray diffraction profile for artificial superlattices. Japanese Journal of Applied Physics, 2000, 39(1):186.
DOI |
[104] |
KAN D, ASO R, SATO R, et al. Tuning magnetic anisotropy by interfacially engineering the oxygen coordination environment in a transition metal oxide. Nature Materials, 2016, 15(4):432.
DOI PMID |
[1] | DING Ling, JIANG Rui, TANG Zilong, YANG Yunqiong. MXene: Nanoengineering and Application as Electrode Materials for Supercapacitors [J]. Journal of Inorganic Materials, 2023, 38(6): 619-633. |
[2] | YANG Zhuo, LU Yong, ZHAO Qing, CHEN Jun. X-ray Diffraction Rietveld Refinement and Its Application in Cathode Materials for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2023, 38(6): 589-605. |
[3] | CHEN Qiang, BAI Shuxin, YE Yicong. Highly Thermal Conductive Silicon Carbide Ceramics Matrix Composites for Thermal Management: a Review [J]. Journal of Inorganic Materials, 2023, 38(6): 634-646. |
[4] | NIU Jiaxue, SUN Si, LIU Pengfei, ZHANG Xiaodong, MU Xiaoyu. Copper-based Nanozymes: Properties and Applications in Biomedicine [J]. Journal of Inorganic Materials, 2023, 38(5): 489-502. |
[5] | YUAN Jingkun, XIONG Shufeng, CHEN Zhangwei. Research Trends and Challenges of Additive Manufacturing of Polymer-derived Ceramics [J]. Journal of Inorganic Materials, 2023, 38(5): 477-488. |
[6] | DU Jianyu, GE Chen. Recent Progress in Optoelectronic Artificial Synapse Devices [J]. Journal of Inorganic Materials, 2023, 38(4): 378-386. |
[7] | YANG Yang, CUI Hangyuan, ZHU Ying, WAN Changjin, WAN Qing. Research Progress of Flexible Neuromorphic Transistors [J]. Journal of Inorganic Materials, 2023, 38(4): 367-377. |
[8] | YOU Junqi, LI Ce, YANG Dongliang, SUN Linfeng. Double Dielectric Layer Metal-oxide Memristor: Design and Applications [J]. Journal of Inorganic Materials, 2023, 38(4): 387-398. |
[9] | LIN Siqi, LI Airan, FU Chenguang, LI Rongbing, JIN Min. Crystal Growth and Thermoelectric Properties of Zintl Phase Mg3X2 (X=Sb, Bi) Based Materials: a Review [J]. Journal of Inorganic Materials, 2023, 38(3): 270-279. |
[10] | CHEN Kunfeng, HU Qianyu, LIU Feng, XUE Dongfeng. Multi-scale Crystallization Materials: Advances in in-situ Characterization Techniques and Computational Simulations [J]. Journal of Inorganic Materials, 2023, 38(3): 256-269. |
[11] | ZHANG Chaoyi, TANG Huili, LI Xianke, WANG Qingguo, LUO Ping, WU Feng, ZHANG Chenbo, XUE Yanyan, XU Jun, HAN Jianfeng, LU Zhanwen. Research Progress of ScAlMgO4 Crystal: a Novel GaN and ZnO Substrate [J]. Journal of Inorganic Materials, 2023, 38(3): 228-242. |
[12] | QI Zhanguo, LIU Lei, WANG Shouzhi, WANG Guogong, YU Jiaoxian, WANG Zhongxin, DUAN Xiulan, XU Xiangang, ZHANG Lei. Progress in GaN Single Crystals: HVPE Growth and Doping [J]. Journal of Inorganic Materials, 2023, 38(3): 243-255. |
[13] | XIE Bing, CAI Jinxia, WANG Tongtong, LIU Zhiyong, JIANG Shenglin, ZHANG Haibo. Research Progress of Polymer-based Multilayer Composite Dielectrics with High Energy Storage Density [J]. Journal of Inorganic Materials, 2023, 38(2): 137-147. |
[14] | LIU Yan, ZHANG Keying, LI Tianyu, ZHOU Bo, LIU Xuejian, HUANG Zhengren. Electric-field Assisted Joining Technology for the Ceramics Materials: Current Status and Development Trend [J]. Journal of Inorganic Materials, 2023, 38(2): 113-124. |
[15] | FENG Jingjing, ZHANG Youran, MA Mingsheng, LU Yiqing, LIU Zhifu. Current Status and Development Trend of Cold Sintering Process [J]. Journal of Inorganic Materials, 2023, 38(2): 125-136. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||