Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (6): 619-633.DOI: 10.15541/jim20220566
Special Issue: 【能源环境】储能电池(202506); 【信息功能】MAX、MXene及其他二维材料(202506); 【能源环境】超级电容器(202409)
• REVIEW • Previous Articles Next Articles
DING Ling1(), JIANG Rui1, TANG Zilong2, YANG Yunqiong3
Received:
2022-09-26
Revised:
2022-11-21
Published:
2022-12-09
Online:
2022-12-09
About author:
DING Ling (1976-), female, professor. E-mail: dingling@wust.edu.cn
Supported by:
CLC Number:
DING Ling, JIANG Rui, TANG Zilong, YANG Yunqiong. MXene: Nanoengineering and Application as Electrode Materials for Supercapacitors[J]. Journal of Inorganic Materials, 2023, 38(6): 619-633.
Fig. 1 Schematic illustration of structural and electronic structural changes of MXene in (a) aqueous and (b) nonaqueous Li+ electrolytes[21] φ, inner potential; ηe, electron electrochemical potential
Fig. 2 Preparation method and electrochemical performance of iodine-containing terminated MXene[43] (a) Preparing strategy by Lewis-acid melt etching; (b) CV curves of I-Ti3C2 MXene and HF-Ti3C2Tx MXene at 5 mV·s−1; WE, working electrode; RE, reference electrode; CE, counter electrode Colorful figures are available on website
Fig. 3 Synthesis procedure and electrochemical performance of 900N-Ti2CTx nanosheets[49] (a) Synthesis procedure; (b) CV curves at 100 mV·s−1; (c) Discharge current density as a function of scanning rate; 1 Å = 0.1 nm Colorful figures are available on website
Fig. 4 (a) Schematic illustration of the preparation and (b) electrochemical performance of the MXene ribbon MR-0.5[53] Colorful figures are available on website
Fig. 5 Schematic illustration and electrochemical performance of d-Ti3C2/NF composite[58] (a) Schematic illustration; (b) CV curves at 20 mV·s−1; (c) GCD curves at 1 A·g−1 Colorful figures are available on website
Fig. 6 Preparative schematic illustration and electrochemical performance of MXene/PANI film[61] (a) Preparative schematic diagram; (b) CV plots of MP0, MP2, MP5 and MP8 at a scan rate of 50 mV·s−1 Colorful figures are available on website
Fig. 7 Schematic diagram of the equipment used for size grading MXene and size-refinement effect characterization[69] (a) Schematic diagram of the equipment; (b) Stress-strain curves; (c) GCD curves at 1 A·g−1 Colorful figures are available on website
Fig. 8 Preparative schematic illustration of multi-scale structural engineering strategy and electrochemical performance of ordered MXene hydrogel supercapacitor electrode[70] (a) Preparative schematic illustration; (b) CV plots at 100 mV·s−1; (c) Rate performance Colorful figures are available on website
Electrode | Specific capacity | Rate capability | Power density/energy density | Electrolyte | Ref. |
---|---|---|---|---|---|
MXene-rHGO | 1445 F·cm−3@2 mV·s−1 | 988 F·cm−1@500 mV·s−1 | 38.6 Wh·L−1/206 W·L−1 | 3 mol·L−1 H2SO4 | [ |
Ti3C2/CNTs | 134 F·g-1@1 A·g-1 | - | 2.77 Wh·kg−1/311 W·kg−1 | 6 mol·L−1 KOH | [ |
MnO2@MXene/CNT | 371.1 F·cm−3@1 A·cm−3 | - | 8.22 mWh·cm−3/ 276.28 mW·cm−3 | 1 mol·L−1 H2SO4 | [ |
MnO2/Ti3C2Tx | 130.5 F·g−1@0.2 A·g−1 | 130.5 F·g−1@0.2 A·g−1 | - | 1 mol·L−1 Na2SO4 | [ |
Co3O4-Nb2C | 1061 F·g-1@2 A·g-1 | 547 F·g−1@50 A·g−1 | 60.3 Wh·kg−1/670 W·kg−1 | 6 mol·L−1 KOH | [ |
Co-MXene | 1081 F·g-1@0.5 A·g-1 | - | 26.06 Wh·kg−1/700 W·kg−1 | 6 mol·L−1 KOH | [ |
MXene/MnCo2O4 | 806.67 F·g-1@1 A·g-1 | 545.83 F·g−1@5 A·g−1 | 26.8 Wh·kg−1/2.88 kW·kg−1 | 1 mol·L−1 KOH | [ |
NiMoO4/Ti3C2Tx | 545.5 C·g−1 (1364 F·g−1)@0.5 A·g−1 | 66.5 C·g−1 @5 A·g−1 | 33.36 Wh·kg−1/400.08 W·kg−1 | 3 mol·L−1 KOH | [3] |
MoO3 NWs/MXene@CC | 775 F·g-1@1 A·g-1 | - | - | 2 mol·L−1 KOH | [ |
Ti3C2Tx/CoS2 | 1320 F·g−1@1 A·g−1 | 1320 F·g−1@1 A·g−1 | - | 2 mol·L−1 KOH | [ |
MXene-NiCo2S4@NF | 596.69 C·g−1@1 A·g−1 | 596.69 C·g−1@1 A·g−1 | - | 3 mol·L−1 KOH | [ |
Ti3C2-DA-NiMoS4 | 1288 F·g-1@1 A·g-1 | 1288 F·g−1@1 A·g−1 | 40.5 Wh·kg−1/810 W·kg−1 | Not mentioned | [ |
NiCo2Se4/MXene | 953.8 F·g-1@1 A·g-1 | - | 22.4 Wh·kg−1/800 W·kg−1 | 3 mol·L−1 KOH | [ |
Co Ni(Ox)Se @MXene | 1782 F·g-1@5 mV·s-1 | - | 7.2 kW·kg−1/131.9 Wh·kg−1 | 1 mol·L−1 KOH | [ |
NS-MXene | 495 F·g-1@1 A·g-1 | 180 F·g−1@10 A·g−1 | - | 1 mol·L−1 H2SO4 | [ |
MXene-PANI/a-Fe2O3-MnO2/MXene-PANI | 661 F·g-1 3138 mF·cm−3@3 mV·s -1 | - | 53.32 Wh·L−1/17.45 Wh·kg−1 | 1 mol·L−1 H2SO4 | [ |
Ti3C2Tx/Ni-MOFs | 1124 F·g-1@1 A·g-1 | 697 F·g−1@20 A·g−1 | 24 Wh·kg−1/8 kW·kg−1 | 6 mol·L−1 KOH | [ |
BiOCl-Ti3C2Tx | 396.5 F·cm−3@1 A·g-1 | 228 F·cm−3@15 A·g−1 | 15.2 Wh·kg−1/567.4 W·kg−1 | 1 mol·L−1 KOH | [ |
Table 1 Examples of electrochemical properties of MXene-based electrodes
Electrode | Specific capacity | Rate capability | Power density/energy density | Electrolyte | Ref. |
---|---|---|---|---|---|
MXene-rHGO | 1445 F·cm−3@2 mV·s−1 | 988 F·cm−1@500 mV·s−1 | 38.6 Wh·L−1/206 W·L−1 | 3 mol·L−1 H2SO4 | [ |
Ti3C2/CNTs | 134 F·g-1@1 A·g-1 | - | 2.77 Wh·kg−1/311 W·kg−1 | 6 mol·L−1 KOH | [ |
MnO2@MXene/CNT | 371.1 F·cm−3@1 A·cm−3 | - | 8.22 mWh·cm−3/ 276.28 mW·cm−3 | 1 mol·L−1 H2SO4 | [ |
MnO2/Ti3C2Tx | 130.5 F·g−1@0.2 A·g−1 | 130.5 F·g−1@0.2 A·g−1 | - | 1 mol·L−1 Na2SO4 | [ |
Co3O4-Nb2C | 1061 F·g-1@2 A·g-1 | 547 F·g−1@50 A·g−1 | 60.3 Wh·kg−1/670 W·kg−1 | 6 mol·L−1 KOH | [ |
Co-MXene | 1081 F·g-1@0.5 A·g-1 | - | 26.06 Wh·kg−1/700 W·kg−1 | 6 mol·L−1 KOH | [ |
MXene/MnCo2O4 | 806.67 F·g-1@1 A·g-1 | 545.83 F·g−1@5 A·g−1 | 26.8 Wh·kg−1/2.88 kW·kg−1 | 1 mol·L−1 KOH | [ |
NiMoO4/Ti3C2Tx | 545.5 C·g−1 (1364 F·g−1)@0.5 A·g−1 | 66.5 C·g−1 @5 A·g−1 | 33.36 Wh·kg−1/400.08 W·kg−1 | 3 mol·L−1 KOH | [3] |
MoO3 NWs/MXene@CC | 775 F·g-1@1 A·g-1 | - | - | 2 mol·L−1 KOH | [ |
Ti3C2Tx/CoS2 | 1320 F·g−1@1 A·g−1 | 1320 F·g−1@1 A·g−1 | - | 2 mol·L−1 KOH | [ |
MXene-NiCo2S4@NF | 596.69 C·g−1@1 A·g−1 | 596.69 C·g−1@1 A·g−1 | - | 3 mol·L−1 KOH | [ |
Ti3C2-DA-NiMoS4 | 1288 F·g-1@1 A·g-1 | 1288 F·g−1@1 A·g−1 | 40.5 Wh·kg−1/810 W·kg−1 | Not mentioned | [ |
NiCo2Se4/MXene | 953.8 F·g-1@1 A·g-1 | - | 22.4 Wh·kg−1/800 W·kg−1 | 3 mol·L−1 KOH | [ |
Co Ni(Ox)Se @MXene | 1782 F·g-1@5 mV·s-1 | - | 7.2 kW·kg−1/131.9 Wh·kg−1 | 1 mol·L−1 KOH | [ |
NS-MXene | 495 F·g-1@1 A·g-1 | 180 F·g−1@10 A·g−1 | - | 1 mol·L−1 H2SO4 | [ |
MXene-PANI/a-Fe2O3-MnO2/MXene-PANI | 661 F·g-1 3138 mF·cm−3@3 mV·s -1 | - | 53.32 Wh·L−1/17.45 Wh·kg−1 | 1 mol·L−1 H2SO4 | [ |
Ti3C2Tx/Ni-MOFs | 1124 F·g-1@1 A·g-1 | 697 F·g−1@20 A·g−1 | 24 Wh·kg−1/8 kW·kg−1 | 6 mol·L−1 KOH | [ |
BiOCl-Ti3C2Tx | 396.5 F·cm−3@1 A·g-1 | 228 F·cm−3@15 A·g−1 | 15.2 Wh·kg−1/567.4 W·kg−1 | 1 mol·L−1 KOH | [ |
[1] | 刘志成, 彭道刚, 赵慧荣, 等. 双碳目标下储能参与电力系统辅助服务发展前景. 储能科学与技术, 2022, 11(2):704. |
[2] |
ZHANG J, JIANG D, LIAO L, et al. Ti3C2Tx MXene based hybrid electrodes for wearable supercapacitors with varied deformation capabilities. Chemical Engineering Journal, 2022, 429: 132232.
DOI URL |
[3] |
WANG Y, SUN J, QIAN X, et al. 2D/2D heterostructures of nickel molybdate and MXene with strong coupled synergistic effect towards enhanced supercapacitor performance. Journal of Power Sources, 2019, 414: 540.
DOI URL |
[4] |
SHAN Q, MU X, ALHABEB M, et al. Two-dimensional vanadium carbide (V2C) MXene as electrode for supercapacitors with aqueous electrolytes. Electrochemistry Communications, 2018, 96: 103.
DOI URL |
[5] | 邵光伟, 郭珊珊, 于瑞, 等. 可拉伸超级电容器的研究进展: 电极、电解质和器件. 物理学报, 2020, 69(17):155. |
[6] |
NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 2011, 23(37):4248.
DOI URL |
[7] |
NAGUIB M, MASHTALIR O, CARLE J, et al. Two-dimensional transition metal carbides. ACS Nano, 2012, 6(2):1322.
DOI PMID |
[8] |
MASHTALIR O, NAGUIB M, MOCHALIN V N, et al. Intercalation and delamination of layered carbides and carbonitrides. Nature Communications, 2013, 4: 1716.
DOI PMID |
[9] |
ZHANG J F, CAO H Y, WANG H B. Research progress of novel two-dimensional material MXene. Journal of Inorganic Materials, 2017, 32(6):561.
DOI URL |
[10] |
YAN H T, LI X H, LIU M Z, et al. Quantum capacitance of supercapacitor electrodes based on the F-functionalized M2C MXenes: a first-principles study. Vacuum, 2022, 201: 111094.
DOI URL |
[11] |
WANG Q, PAN X, WANG X, et al. Fabrication strategies and application fields of novel 2D Ti3C2Tx (MXene) composite hydrogels: a mini-review. Ceramics International, 2021, 47(4):4398.
DOI URL |
[12] |
ZHAO X, VASHISTH A, BLIVIN J W, et al. pH, nanosheet concentration, and antioxidant affect the oxidation of Ti3C2Tx and Ti2CTx MXene dispersions. Advanced Materials Interfaces, 2020, 7(20):2000845.
DOI URL |
[13] |
BU F, ZAGHO M M, IBRAHIM Y, et al. Porous MXenes: synthesis, structures, and applications. Nano Today, 2020, 30: 100803.
DOI URL |
[14] |
THAKUR N, KUMAR P, SATI D C, et al. Recent advances in two-dimensional MXenes for power and smart energy systems. Journal of Energy Storage, 2022, 50: 104604.
DOI URL |
[15] |
MENG W, LIU X, SONG H, et al. Advances and challenges in 2D MXenes: from structures to energy storage and conversions. Nano Today, 2021, 40: 101273.
DOI URL |
[16] |
JIANG H, WANG Z, YANG Q, et al. A novel MnO2/Ti3C2Tx MXene nanocomposite as high performance electrode materials for flexible supercapacitors. Electrochimica Acta, 2018, 290: 695.
DOI URL |
[17] |
LUKATSKAYA M R, KOTA S, LIN Z, et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nature Energy, 2017, 2(8):17105.
DOI URL |
[18] | ZHANG J, KONG N, HEGH D, et al. Freezing titanium carbide aqueous dispersions for ultra-long-term storage. ACS Applied Materials & Interfaces, 2020, 12(30):34032. |
[19] |
MOMODU D, ZERAATI A S, PABLOS F L, et al. Hybrid energy storage using nitrogen-doped graphene and layered-MXene (Ti3C2) for stable high-rate supercapacitors. Electrochimica Acta, 2021, 388:138664.
DOI URL |
[20] |
WU J, LI Q, SHUCK C E, et al. An aqueous 2.1 V pseudocapacitor with MXene and V-MnO2 electrodes. Nano Research, 2021, 15(1):535.
DOI |
[21] |
OKUBO M, SUGAHARA A, KAJIYAMA S, et al. MXene as a charge storage host. Accounts of Chemical Research, 2018, 51(3):591.
DOI PMID |
[22] |
HANTANASIRISAKUL K, GOGOTSI Y. Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes). Advanced Materials, 2018, 30(52):1804779.
DOI URL |
[23] | YING G, KOTA S, DILLON A D, et al. Conductive transparent V2CTx (MXene) films. Chemistry of Flat Materials, 2018, 8:25. |
[24] |
WANG K, ZHOU Y, XU W, et al. Fabrication and thermal stability of two-dimensional carbide Ti3C2 nanosheets. Ceramics International, 2016, 42(7):8419.
DOI URL |
[25] |
HALIM J, PERSSON I, MOON E J, et al. Electronic and optical characterization of 2D Ti2C and Nb2C (MXene) thin films. Journal of Physics: Condensed Matter, 2019, 31(16):165301.
DOI URL |
[26] |
ELEMIKE E E, OSAFILE O E, OMUGBE E. New perspectives 2Ds to 3Ds MXenes and graphene functionalized systems as high performance energy storage materials. Journal of Energy Storage, 2021, 42:102993.
DOI URL |
[27] |
BORYSIUK V N, MOCHALIN V N, GOGOTSI Y. Bending rigidity of two-dimensional titanium carbide (MXene) nanoribbons: a molecular dynamics study. Computational Materials Science, 2018, 143:418.
DOI URL |
[28] | ZHANG N, HONG Y, YAZDANPARAST S, et al. Superior structural, elastic and electronic properties of 2D titanium nitride MXenes over carbide MXenes: a comprehensive first principles study. 2D Materials, 2018, 5(4):045004. |
[29] |
LI X, MA Y, YUE Y, et al. A flexible Zn-ion hybrid micro- supercapacitor based on MXene anode and V2O5 cathode with high capacitance. Chemical Engineering Journal, 2022, 428:130965.
DOI URL |
[30] |
KAJIYAMA S, SZABOVA L, IINUMA H, et al. Enhanced Li-ion accessibility in MXene titanium carbide by steric chloride termination. Advanced Energy Materials, 2017, 7(9):1601873.
DOI URL |
[31] |
KAJIYAMA S, SZABOVA L, SODEYAMA K, et al. Sodium-ion intercalation mechanism in MXene nanosheets. ACS Nano, 2016, 10(3):3334.
DOI PMID |
[32] |
XU K, JI X, ZHANG B, et al. Charging/discharging dynamics in two-dimensional titanium carbide (MXene) slit nanopore: insights from molecular dynamic study. Electrochimica Acta, 2016, 196:75.
DOI URL |
[33] |
YU H, WANG Y, JING Y, et al. Surface modified MXene-based nanocomposites for electrochemical energy conversion and storage. Small, 2019, 15(25):1901503.
DOI URL |
[34] |
XIAO M X, LI M M, SONG E H, et al. Halogenated Ti3C2 MXene as high capacity electrode material for Li-ion batteries. Journal of Inorganic Materials, 2022, 37(6):660.
DOI URL |
[35] |
LIU W, ZHENG Y, ZHANG Z, et al. Ultrahigh gravimetric and volumetric capacitance in Ti3C2Tx MXene negative electrode enabled by surface modification and in-situ intercalation. Journal of Power Sources, 2022, 521:230965.
DOI URL |
[36] |
CHEN W, TANG J, CHENG P, et al. 3D porous MXene (Ti3C2Tx) prepared by alkaline-induced flocculation for supercapacitor electrodes. Materials, 2022, 15(3):925.
DOI URL |
[37] |
CHEN J, CHEN H, CHEN M, et al. Nacre-inspired surface- engineered MXene/nanocellulose composite film for high-performance supercapacitors and zinc-ion capacitors. Chemical Engineering Journal, 2022, 428:131380.
DOI URL |
[38] |
LI J, YUAN X, LIN C, et al. Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification. Advanced Energy Materials, 2017, 7(15):1602725.
DOI URL |
[39] |
CHEN X, ZHU Y, ZHANG M, et al. n-Butyllithium-treated Ti3C2Tx MXene with excellent pseudocapacitor performance. ACS Nano, 2019, 13(8):9449.
DOI URL |
[40] |
KAMYSBAYEV V, FILATOV A S, HU H, et al. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science, 2020, 369(6506):979.
DOI PMID |
[41] |
MAO K, SHI J, ZHANG Q, et al. High-capacitance MXene anode based on Zn-ion pre-intercalation strategy for degradable micro Zn-ion hybrid supercapacitors. Nano Energy, 2022, 103:107791.
DOI URL |
[42] |
LI T, YAO L, LIU Q, et al. Fluorine-free synthesis of high-purity Ti3C2Tx (T=OH, O) via alkali treatment. Angewandte Chemie International Edition, 2018, 57(21):6115.
DOI URL |
[43] |
GONG S, ZHAO F, XU H, et al. Iodine-functionalized titanium carbide MXene with ultra-stable pseudocapacitor performance. Journal of Colloid and Interface Science, 2022, 615:643.
DOI PMID |
[44] |
NASRIN K, SUDHARSHAN V, SUBRAMANI K, et al. In-situ synergistic 2D/2D MXene/BCN heterostructure for superlative energy density supercapacitor with super-long life. Small, 2022, 18(4):2106051.
DOI URL |
[45] |
吕通, 张恩爽, 原因, 等. 大片单层低缺陷MXene的制备及其膜材料的电磁屏蔽性能. 高等学校化学学报, 2019, 40(10): 2059.
DOI |
[46] |
YANG F, HEGH D, SONG D, et al. Synthesis of nitrogen-sulfur co-doped Ti3C2Tx MXene with enhanced electrochemical properties. Materials Reports: Energy, 2022, 2(1):100079.
DOI URL |
[47] |
WEN Y, RUFFORD T E, CHEN X, et al. Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors. Nano Energy, 2017, 38:368.
DOI URL |
[48] |
YANG F, HEGH D, SONG D, et al. A nitrogenous pre-intercalation strategy for the synthesis of nitrogen-doped Ti3C2Tx MXene with enhanced electrochemical capacitance. Journal of Materials Chemistry A, 2021, 9(10):6393.
DOI URL |
[49] |
YOON Y, LEE M, KIM S K, et al. A strategy for synthesis of carbon nitride induced chemically doped 2D MXene for high- performance supercapacitor electrodes. Advanced Energy Materials, 2018, 8(15):1703173.
DOI URL |
[50] |
LEE J B, CHOI G H, YOO P J. Oxidized-co-crumpled multiscale porous architectures of MXene for high performance supercapacitors. Journal of Alloys and Compounds, 2021, 887:161304.
DOI URL |
[51] |
YAO M, CHEN Y, WANG Z, et al. Boosting gravimetric and volumetric energy density via engineering macroporous MXene films for supercapacitors. Chemical Engineering Journal, 2020, 395:124057.
DOI URL |
[52] |
GUAN G, LI P, SHI X, et al. Electrode based on porous MXene nanosheets for high-performance supercapacitor. Journal of Alloys and Compounds, 2022, 924:166647.
DOI URL |
[53] |
ZHENG X. Enhancing the ion accessibility of Ti3C2Tx MXene films by femtosecond laser ablation towards high-rate supercapacitors. Journal of Alloys and Compounds, 2022, 899:163275.
DOI URL |
[54] |
WANG S, ZHAO S, GUO X, et al. 2D Material-based heterostructures for rechargeable batteries. Advanced Energy Materials, 2022, 12(4):2100864.
DOI URL |
[55] |
DENG Y, SHANG T, WU Z, et al. Fast gelation of Ti3C2Tx MXene initiated by metal ions. Advanced Materials, 2019, 31(43):1902432.
DOI URL |
[56] |
ZHU Z, WANG Z, BA Z, et al. 3D MXene-holey graphene hydrogel for supercapacitor with superior energy storage. Journal of Energy Storage, 2022, 47:103911.
DOI URL |
[57] |
WANG Y, WANG X, LI X, et al. Engineering 3D ion transport channels for flexible MXene films with superior capacitive performance. Advanced Functional Materials, 2019, 29(14):1900326.
DOI URL |
[58] |
GUO J, ZHAO Y, LIU A, et al. Electrostatic self-assembly of 2D delaminated MXene (Ti3C2) onto Ni foam with superior electrochemical performance for supercapacitor. Electrochimica Acta, 2019, 305:164.
DOI URL |
[59] |
GUO T, ZHOU D, PANG L, et al. Sandwich-type macroporous Ti3C2Tx MXene frameworks for supercapacitor electrode. Scripta Materialia, 2022, 213:114590.
DOI URL |
[60] | MURALI G, RAWAL J, MODIGUNTA J K R, et al. A review on MXenes: new-generation 2D materials for supercapacitors. Sustainable Energy & Fuels, 2021, 5(22):5672. |
[61] |
LUO W, WEI Y, ZHUANG Z, et al. Fabrication of Ti3C2Tx MXene/polyaniline composite films with adjustable thickness for high-performance flexible all-solid-state symmetric supercapacitors. Electrochimica Acta, 2022, 406:139871.
DOI URL |
[62] |
GUO H, ZHANG J, YANG F, et al. Sandwich-like porous MXene/ Ni3S4/CuS derived from MOFs as superior supercapacitor electrode. Journal of Alloys and Compounds, 2022, 906:163863.
DOI URL |
[63] |
GUO H, ZHANG J, XU M, et al. Zeolite-imidazole framework derived nickel-cobalt hydroxide on ultrathin MXene nanosheets for long life and high performance supercapacitance. Journal of Alloys and Compounds, 2021, 888:161250.
DOI URL |
[64] |
LIU X, LU Z, HUANG X, et al. Self-assembled S, N co-doped reduced graphene oxide/MXene aerogel for both symmetric liquid- and all-solid-state supercapacitors. Journal of Power Sources, 2021, 516:230682.
DOI URL |
[65] |
XU J, ZHU J, GONG C, et al. Achieving high yield of Ti3C2T MXene few-layer flakes with enhanced pseudocapacior performance by decreasing precursor size. Chinese Chemical Letters, 2020, 31(4):1039.
DOI URL |
[66] |
LUO S, PATOLE S, ANWER S, et al. Tensile behaviors of Ti3C2Tx (MXene) films. Nanotechnology, 2020, 31(39):395704.
DOI URL |
[67] | MALESKI K, REN C E, ZHAO M Q, et al. Size-dependent physical and electrochemical properties of two-dimensional MXene flakes. ACS Applied Materials & Interfaces, 2018, 10(29):24491. |
[68] |
LI X, MA Y, SHEN P, et al. Self‐healing microsupercapacitors with size-dependent 2D MXene. ChemElectroChem, 2020, 7(3):821.
DOI URL |
[69] |
SUN J, LIU Y, HUANG J, et al. Size-refinement enhanced flexibility and electrochemical performance of MXene electrodes for flexible waterproof supercapacitors. Journal of Energy Chemistry, 2021, 63:594.
DOI URL |
[70] |
HUANG X, HUANG J, YANG D, et al. A multi-scale structural engineering strategy for high-performance MXene hydrogel supercapacitor electrode. Advanced Science, 2021, 8(18):2101664.
DOI URL |
[71] |
XIA Y, MATHIS T S, ZHAO M Q, et al. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature, 2018, 557(7705):409.
DOI |
[72] |
YU J, ZENG M, ZHOU J, et al. A one-pot synthesis of nitrogen doped porous MXene/TiO2 heterogeneous film for high-performance flexible energy storage. Chemical Engineering Journal, 2021, 426:130765.
DOI URL |
[73] |
TIAN Y, QUE B, LUO Y, et al. Amino-rich surface-modified MXene as anode for hybrid aqueous proton supercapacitors with superior volumetric capacity. Journal of Power Sources, 2021, 495:229790.
DOI URL |
[74] |
WANG J, GONG J, ZHANG H, et al. Construction of hexagonal nickel-cobalt oxide nanosheets on metal-organic frameworks based on MXene interlayer ion effect for hybrid supercapacitors. Journal of Alloys and Compounds, 2021, 870:159466.
DOI URL |
[75] |
FAN Z, WANG Y, XIE Z, et al. Modified MXene/holey graphene films for advanced supercapacitor electrodes with superior energy storage. Advanced Science, 2018, 5(10):1800750.
DOI URL |
[76] |
YANG L, ZHENG W, ZHANG P, et al. MXene/CNTs films prepared by electrophoretic deposition for supercapacitor electrodes. Journal of Electroanalytical Chemistry, 2018, 830-831:1.
DOI URL |
[77] |
GUO Z, LI Y, LU Z, et al. High-performance MnO2@MXene/carbon nanotube fiber electrodes with internal and external construction for supercapacitors. Journal of Materials Science, 2022, 57(5):3613.
DOI |
[78] |
SHEN B, LIAO X, ZHANG X, et al. Synthesis of Nb2C MXene-based 2D layered structure electrode material for high-performance battery-type supercapacitors. Electrochimica Acta, 2022, 413:140144.
DOI URL |
[79] |
ZHANG Y, CAO J, YUAN Z, et al. Assembling Co3O4 nanoparticles into MXene with enhanced electrochemical performance for advanced asymmetric supercapacitors. Journal of Colloid and Interface Science, 2021, 599:109.
DOI URL |
[80] |
XIA Q, CAO W, XU F, et al. Assembling MnCo2O4 nanoparticles embedded into MXene with effectively improved electrochemical performance. Journal of Energy Storage, 2022, 47:103906.
DOI URL |
[81] |
MAHMOOD M, CHAUDHARY K, SHAHID M, et al. Fabrication of MoO3 nanowires/MXene@CC hybrid as highly conductive and flexible electrode for next-generation supercapacitors applications. Ceramics International, 2022, 48(13):19314.
DOI URL |
[82] |
LIU H, HU R, QI J, et al. One‐step synthesis of nanostructured CoS2 grown on titanium carbide MXene for high‐performance asymmetrical supercapacitors. Advanced Materials Interfaces, 2020, 7(6):1901659.
DOI URL |
[83] |
LI H, CHEN X, ZALNEZHAD E, et al. 3D hierarchical transition-metal sulfides deposited on MXene as binder-free electrode for high-performance supercapacitors. Journal of Industrial and Engineering Chemistry, 2020, 82:309.
DOI URL |
[84] |
XU J, YANG X, ZOU Y, et al. High density anchoring of NiMoS4 on ultrathin Ti3C2 MXene assisted by dopamine for supercapacitor electrode materials. Journal of Alloys and Compounds, 2022, 891:161945.
DOI URL |
[85] |
LIU Y, GONG J, WANG J, et al. Facile fabrication of MXene supported nickel-cobalt selenide ternary composite via one-step hydrothermal for high-performance asymmetric supercapacitors. Journal of Alloys and Compounds, 2022, 899:163354.
DOI URL |
[86] |
KARKUZHALI R, MANOJ S, SHANMUGAPRIYA K, et al. MXene-based O/Se-rich bimetallic nanocomposites for high performance solid-state symmetric supercapacitors. Journal of Solid State Chemistry, 2022, 306:122727.
DOI URL |
[87] |
LI C, WANG S, CUI Y, et al. Sandwich-like high-load MXene/polyaniline film electrodes with ultrahigh volumetric capacitance for flexible supercapacitors. Journal of Colloid and Interface Science, 2022, 620:35.
DOI PMID |
[88] |
ZHANG X, YANG S, LU W, et al. MXenes induced formation of Ni-MOF microbelts for high-performance supercapacitors. Journal of Colloid and Interface Science, 2021, 592:95.
DOI PMID |
[89] |
XIA Q X, SHINDE N M, YUN J M, et al. Bismuth oxychloride/ MXene symmetric supercapacitor with high volumetric energy density. Electrochimica Acta, 2018, 271:351.
DOI URL |
[90] |
YAN J, REN C E, MALESKI K, et al. Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Advanced Functional Materials, 2017, 27(30):1701264.
DOI URL |
[91] |
LIAN S, LI G, SONG F, et al. Surfactant-free self-assembled MXene/carbon nanotubes hybrids for high-rate sodium- and potassium-ion storage. Journal of Alloys and Compounds, 2022, 901:163426.
DOI URL |
[92] | BAI T, WANG W, XUE G, et al. Free-standing, flexible carbon@MXene films with cross-linked mesoporous structures toward supercapacitors and pressure sensors. ACS Applied Materials & Interfaces, 2021, 13(48):57576. |
[93] |
ZHANG D, LUO M, YANG K, et al. Porosity-adjustable MXene film with transverse and longitudinal ion channels for flexible supercapacitors. Microporous and Mesoporous Materials, 2021, 326:111389.
DOI URL |
[94] |
ZHU M, HUANG Y, DENG Q, et al. Highly flexible, freestanding supercapacitor electrode with enhanced performance obtained by hybridizing polypyrrole chains with MXene. Advanced Energy Materials, 2016, 6(21):1600969.
DOI URL |
[95] | KAUSAR A. Polymer/MXene nanocomposite-a new age for advanced materials. Polymer-Plastics Technology and Materials, 2021, 60:1377. |
[96] |
RUAN C, ZHU D, QI J, et al. MXene-modulated CoNi2S4 dendrite as enhanced electrode for hybrid supercapacitors. Surfaces and Interfaces, 2021, 25:101274.
DOI URL |
[97] |
SHI T Z, FENG Y L, PENG T, et al. Sea urchin-shaped Fe2O3 coupled with 2D MXene nanosheets as negative electrode for high-performance asymmetric supercapacitors. Electrochimica Acta, 2021, 381:138245.
DOI URL |
[98] |
GENG P, ZHENG S, TANG H, et al. Transition metal sulfides based on graphene for electrochemical energy storage. Advanced Energy Materials, 2018, 8(15):1703259.
DOI URL |
[99] |
HE Z, WANG Y, LI Y, et al. Superior pseudocapacitive performance and mechanism of self-assembled MnO2/MXene films as positive electrodes for flexible supercapacitors. Journal of Alloys and Compounds, 2022, 899:163241.
DOI URL |
[100] |
CHEN X, DING Z, YU H, et al. Facile fabrication of CuCo2S4 nanoparticles/MXene composite as anode for high-performance asymmetric supercapacitor. Materials Chemistry Frontiers, 2021, 5:7606.
DOI URL |
[101] |
LIU Y T, ZHANG P, SUN N, et al. Self-assembly of transition metal oxide nanostructures on MXene nanosheets for fast and stable lithium storage. Advanced Materials, 2018, 30(23):1707334.
DOI URL |
[102] |
LI H, LIU Y, LIN S, et al. Laser crystallized sandwich-like MXene/Fe3O4/MXene thin film electrodes for flexible supercapacitors. Journal of Power Sources, 2021, 497:229882.
DOI URL |
[103] |
WANG X, SONG H, MA S, et al. Template ion-exchange synthesis of Co-Ni composite hydroxides nanosheets for supercapacitor with unprecedented rate capability. Chemical Engineering Journal, 2022, 432:134319.
DOI URL |
[104] |
MAHMOOD M, ZULFIQAR S, WARSI M F, et al. Nanostructured V2O5 and its nanohybrid with MXene as an efficient electrode material for electrochemical capacitor applications. Ceramics International, 2022, 48(2):2345.
DOI URL |
[105] |
FAN Z, WANG Y, XIE Z, et al. A nanoporous MXene film enables flexible supercapacitors with high energy storage. Nanoscale, 2018, 10(20):9642.
DOI PMID |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[8] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[9] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[10] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[11] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[12] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[13] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[14] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
[15] | LIU Huilai, LI Zhihao, KONG Defeng, CHEN Xing. Preparation of FePc/MXene Composite Cathode and Electro-Fenton Degradation of Sulfadimethoxine [J]. Journal of Inorganic Materials, 2025, 40(1): 61-69. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||