Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (4): 418-424.DOI: 10.15541/jim20200367
• RESEARCH PAPER • Previous Articles Next Articles
ZENG Jianjun1(), ZHANG Kuibao1,2(
), CHEN Daimeng1, GUO Haiyan1, DENG Ting1, LIU Kui1
Received:
2020-07-02
Revised:
2020-09-18
Published:
2021-04-20
Online:
2020-10-30
Contact:
ZHANG Kuibao, professor. E-mail: xiaobao320@163.com
About author:
ZENG Jianjun(1997-), male, Master candidate. E-mail: zeng_jianjun@126.com
Supported by:
CLC Number:
ZENG Jianjun, ZHANG Kuibao, CHEN Daimeng, GUO Haiyan, DENG Ting, LIU Kui. Preparation of (La0.2Nd0.2Sm0.2Gd0.2Er0.2)2Zr2O7 High-entropy Transparent Ceramics by Vacuum Sintering[J]. Journal of Inorganic Materials, 2021, 36(4): 418-424.
Fig. 3 SEM images of final high-entropy ceramics after hot corrosion (a, d, g), SEM images of fractured final high-entropy ceramics (b, e, h), histograms of grain distribution (c, f, i) of final high-entropy ceramics
[1] | FU ZHENGYI, GU JUNFENG, ZOU JI, et al. Recent progress in high-entropy ceramic materials. Materials China, 2019,38(9):855-865. |
[2] | YEH JIENWEI, CHEN SWEKAI, SUJIEN LIN, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials, 2004,6(5):299-303. |
[3] | CANTOR B, CHANG I T H, KNIGHT P, et al. Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering: A, 2004,375:213-218. |
[4] |
NIU CHANGNING, LAROSA CARLYN R, MIAO JIASHI, et al. Magnetically-driven phase transformation strengthening in high entropy alloys. Nature Communications, 2018,9(1):1363.
URL PMID |
[5] | PRAVEEN S, KIM H S. High-entropy alloys: potential candidates for high-temperature applications-an overview. Advanced Engineering Materials, 2018,20(1):1700645. |
[6] |
MIRACLE D B, SENKOV O N. A critical review of high entropy alloys and related concepts. Acta Materialia, 2017,122:448-511.
DOI URL |
[7] | YEH J. Recent progress in high-entropy alloys. Annales De Chimie-Science Des Materiaux, 2006,31(6):633-648. |
[8] |
CHUANG MINGHAO, TSAI MINGHUNG, WANG WOEIREN, et al. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Materialia, 2011,59(16):6308-6317.
DOI URL |
[9] |
LI ZHIMING, PRADEEP K G, DENG YUN, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature, 2016,534(7606):227-230.
URL PMID |
[10] | BUTLER T M, ALFANO J P, MARTENS R L, et al. High-temperature oxidation behavior of Al-Co-Cr-Ni-(Fe or Si) multicomponent high-entropy alloys. JOM, 2014,67(1):246-259. |
[11] | ROST C M, SACHET E, BORMAN T, et al. Entropy-stabilized oxides. Nature Communications, 2015,6(1):8485. |
[12] | CHELLALI M R, SARKAR A, NANDAM S H, et al. On the homogeneity of high entropy oxides: an investigation at the atomic scale. Scripta Materialia, 2019,166:58-63. |
[13] | LEI ZHIFENG, LIU XIONGJUN, WANG HUI, et al. Development of advanced materials via entropy engineering. Scripta Materialia, 2019,165:164-169. |
[14] | JIANG SICONG, HU TAO, GILD JOSHUA, et al. A new class of high-entropy perovskite oxides. Scripta Materialia, 2018,142:116-120. |
[15] | DJENADIC R, SARKAR A, CLEMENS O, et al. Multicomponent equiatomic rare earth oxides. Materials Research Letters, 2016,5(2):102-109. |
[16] | BRAIC V, VLADESCU A, BALACEANU M, et al. Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings. Surface and Coatings Technology, 2012,211:117-121. |
[17] | JIN T, SANG X, UNOCIC R R, et al. Mechanochemical-assisted synthesis of high-entropy metal nitride via a soft urea strategy. Advanced Materials, 2018,30(23):1707512. |
[18] | WEI XIAO-FENG, LIU JI-XUAN, LI FEI, et al. High entropy carbide ceramics from different starting materials. Journal of the European Ceramic Society, 2019,39:2989-2994. |
[19] | YAN XUELIANG, CONSTANTIN LOIC, LU YONGFENG, et al. (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics with low thermal conductivity. Journal of the American Ceramic Society, 2018,101(10):4486-4491. |
[20] | GILD J, BRAUN J, KAUFMANN K, et al. A high-entropy silicide: (Mo0.2Nb0.2Ta0.2Ti0.2W0.2)Si2. Journal of Materiomics, 2019,5(3):337-343. |
[21] | MAYRHOFER P H, KIRNBAUER A, ERTELTHALER P, et al. High-entropy ceramic thin films; a case study on transition metal diborides. Scripta Materialia, 2018,149:93-97. |
[22] | LIU DA, WEN TONGQI, YE BEILIN, et al. Synthesis of superfine high-entropy metal diboride powders. Scripta Materialia, 2019,167:110-114. |
[23] | SUBRAMANIAN M A, ARAVAMUDAN G, RAO G V. Oxide pyrochlores—a review. Progress in Solid State Chemistry, 1983,15(2):55-143. |
[24] | TROJAN P J, ZYCH E, KOSIŃSKA M. Fabrication and spectroscopic properties of nanocrystalline La2Hf2O7: Pr. Radiation Measurements, 2010,45(3):432-434. |
[25] | WHITTLE K R, CRANSWICK L M D, REDFERN S A T, et al. Lanthanum pyrochlores and the effect of yttrium addition in the systems La2-xYxZr2O7 and La2-xYxHf2O7. Journal of Solid State Chemistry, 2009,182(3):442-450. |
[26] | WANG ZHENGJUAN, ZHOU GUOHONG, JIANG DANYU, et al. Recent development of A2B2O7 system transparent ceramics. Journal of Advanced Ceramics, 2018,7(4):289-306. |
[27] | SU S J, DING Y, SHU X Y, et al. Nd and Ce simultaneous substitution driven structure modifications in Gd2-xNdxZr2-yCeyO7, Journal of the European Ceramic Society, 2014,35(6):1847-1853. |
[28] | LI FEI, ZHOU LIN, LIU JIXUAN, et al. High-entropy pyrochlores with low thermal conductivity for thermal barrier coating materials. Journal of Advanced Ceramics, 2019,8(4):576-582. |
[29] | HE ZONGSHENG, ZHANG KUIBAO, XUE JIALI, et al. Self-propagation high-temperature synthesis of Sm-doped pyrochlores ceramic form and its aqueous durability. Materials Reports, 2018,32(32):247-250. |
[30] |
SICKAFUS K E, MINERVINI L, GRIMES R W, et al. Radiation tolerance of complex oxides. Science, 2000,289:748-751.
URL PMID |
[31] |
EL-ATWANI O, LI N, LI M, et al. Outstanding radiation resistance of tungsten-based high-entropy alloys. Science Advances, 2019,5(3):eaav2002.
URL PMID |
[32] | KAREER A, WAITE J C, LI B, et al. Low activation, refractory, high entropy alloys for nuclear applications, Journal of Nuclear Materials, 2019,526:151744. |
[33] | JI YAMING, JIANG DANYU, FEN TAO, et al. Fabrication of transparent La2Hf2O7 ceramics from combustion synthesized powders. Materials Research Bulletin, 2005,40(3):553-559. |
[34] | ZHAO WENWEN, ZHANG KUIBAO, LI WEIWEI, et al. Fabrication and optical properties of transparent LaErZr2O7 ceramic with high excess contents of La and Er. Ceramics International, 2019,45(9):11717-11722. |
[35] | WANG ZHENGJUAN, ZHOU GUOHONG, QIN XIANPENG, et al. Fabrication and phase transition of La2-xLuxZr2O7 transparent ceramics. Journal of the European Ceramic Society, 2014,34(15):3951-3958. |
[36] | WANG ZHENGJUAN, ZHOU GUOHONG, ZHANG FANG, et al. Fabrication and properties of La2-xGdxHf2O7 transparent ceramics. Journal of Luminescence, 2016,169:612-615. |
[37] | YI HAILAN, ZOU XIAOQING, YANG YAN, et al. Fabrication of highly transmitting LaGdHf2O7 ceramics. Journal of the American Ceramic Society, 2011,94(12):4120-4122. |
[38] | ZHOU GUOHONG, WANG ZHENGJUAN, ZHOU BOZHU, et al. Fabrication of transparent Y2Hf2O7 ceramics via vacuum sintering. Optical Materials, 2013,35(4):774-777. |
[39] | HU Y L, BAI L H, TONG Y G, et al. First-principle calculation investigation of NbMoTaW based refractory high entropy alloys. Journal of Alloys and Compounds, 2020,827:153963. |
[40] | ZHANG GUANGRAN, MILISAVLJEVIC IVA, ZYCH EUGENIUSZ, et al. High-entropy sesquioxide X2O3 upconversion transparent ceramics. Scripta Materialia, 2020,186:19-23. |
[41] | CHEN XIANQIANG, WU YIQUAN. High-entropy transparent fluoride laser ceramics. Journal of the American Ceramic Society, 2019,103(2):750-756. |
[42] | ZHANG KUIBAO, LI WEIWEI, ZENG JIANJUN, et al. Preparation of (La0.2Nd0.2Sm0.2Gd0.2Yb0.2)2Zr2O7 high-entropy transparent ceramic using combustion synthesized nanopowder. Journal of Alloys and Compounds, 2020,817(15):153328. |
[43] | LI WEIWEI, ZHANG KUIBAO, ZHAO WENWEN, et al. Vacuum sintering and optical properties of Gd2-xNdxZr2O7 transparent ceramics using combustion synthesized nanopowders. Optical Materials, 2020,100:109622. |
[44] | LI WEIWEI, ZHANG KUIBAO, XIE DAYAN, et al. Characterizations of vacuum sintered Gd2Zr2O7 transparent ceramics using combustion synthesized nanopowder. Journal of the European Ceramic Society, 2020,40(4):1665-1670. |
[45] |
LEE Y H, SHEU H S, DENG J P, et al. Preparation and fluorite- pyrochlore phase transformation in Gd2Zr2O7. Journal of Alloys and Compounds, 2009,487:595-598.
DOI URL |
[46] | GLERUP M, NIELSEN O F, POULSEN F W. The structural transformation from the pyrochlore structure, A2B2O7, to the fluorite structure, AO2, studied by raman spectroscopy and defect chemistry modeling. Journal of Solid State Chemistry, 2001,160(1):25-32. |
[47] | ZOU XIAOQING, ZHOU GUOHONG, YI HAILAN, et al. Fabrication of transparent Y2Hf2O7 ceramic from combustion synthesized powders. Journal of Inorganic Materials, 2011,26:929-932. |
[48] | GUPTA S K, REGHUKUMAR C, SUDARSHAN K, et al. Orange-red emitting Gd2Zr2O7:Sm3+: structure-property correlation, optical properties and defect spectroscopy . Journal of Physics and Chemistry of Solids, 2018,116:360-366. |
[49] | TROJAN-PIEGZA J, BRITES C D S, RAMALHO J F C B. et al. La0.4Gd1.6Zr2O7:0.1%Pr transparent sintered ceramic-a wide-range luminescence thermometer. Journal of Materials Chemistry C, 2020,8:7005-7011. |
[1] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[2] | LIU Guoang, WANG Hailong, FANG Cheng, HUANG Feilong, YANG Huan. Effect of B4C Content on Mechanical Properties and Oxidation Resistance of (Ti0.25Zr0.25Hf0.25Ta0.25)B2-B4C Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 697-706. |
[3] | ZHANG Rui, ZHANG Kan, YUAN Mengya, GU Xinlei, ZHENG Weitao. Nitrogen Vacancy Regulated Lattice Distortion on Improvement of (NbMoTaW)Nx Thin Films: Mechanical Properties and Wear Resistance [J]. Journal of Inorganic Materials, 2024, 39(6): 715-725. |
[4] | LÜ Zhaoyang, XU Yong, YANG Jiuyan, TU Guangsheng, TU Bingtian, WANG Hao. Effect of MgF2 Additive on Preparation and Optical Properties of MgAl1.9Ga0.1O4 Transparent Ceramics [J]. Journal of Inorganic Materials, 2024, 39(5): 531-538. |
[5] | ZHANG Wenyu, GUO Ruihua, YUE Quanxin, HUANG Yarong, ZHANG Guofang, GUAN Lili. High-entropy Phosphide Bifunctional Catalyst: Preparation and Performance of Efficient Water Splitting [J]. Journal of Inorganic Materials, 2024, 39(11): 1265-1274. |
[6] | GUO Lingxiang, TANG Ying, HUANG Shiwei, XIAO Bolan, XIA Donghao, SUN Jia. Ablation Resistance of High-entropy Oxide Coatings on C/C Composites [J]. Journal of Inorganic Materials, 2024, 39(1): 61-70. |
[7] | GUO Tianmin, DONG Jiangbo, CHEN Zhengpeng, RAO Mumin, LI Mingfei, LI Tian, LING Yihan. Enhanced Compatibility and Activity of High-entropy Double Perovskite Cathode Material for IT-SOFC [J]. Journal of Inorganic Materials, 2023, 38(6): 693-700. |
[8] | JIN Xihai, DONG Manjiang, KAN Yanmei, LIANG Bo, DONG Shaoming. Fabrication of Transparent AlON by Gel Casting and Pressureless Sintering [J]. Journal of Inorganic Materials, 2023, 38(2): 193-198. |
[9] | WANG Dewen, WANG Junping, YUAN Houcheng, LIU Zhang, ZHOU Jin, DENG Jiajie, WANG Xin, WU Benhua, ZHANG Jian, WANG Shiwei. Metre-scale Y3Al5O12 (YAG) Transparent Ceramics by Vacuum Reactive Sintering [J]. Journal of Inorganic Materials, 2023, 38(12): 1483-1484. |
[10] | LI Wenjun, WANG Hao, TU Bingtian, CHEN Qiangguo, ZHENG Kaiping, WANG Weiming, FU Zhengyi. Preparation and Property of Mg0.9Al2.08O3.97N0.03 Transparent Ceramic with Broad Optical Transmission Range [J]. Journal of Inorganic Materials, 2022, 37(9): 969-975. |
[11] | MU Licheng, YANG Jinping, WANG Junping, ZHAO Jin, LIU Mengwei, WANG Dewen, ZHANG Jian. Preparation of YAG Transparent Ceramics by Epoxy Resin Modified Spontaneous Coagulation Casting [J]. Journal of Inorganic Materials, 2022, 37(9): 941-946. |
[12] | LIU Qiang, WANG Qian, CHEN Penghui, LI Xiaoying, ZHANG Lixuan, XIE Tengfei, LI Jiang. Fabrication and Characterizations of Red Ce-doped 8YSZ Transparent Ceramics by Two-step Sintering [J]. Journal of Inorganic Materials, 2022, 37(8): 911-917. |
[13] | XIAO Shulin, DAI Zhonghua, LI Dingyan, ZHANG Fanbo, YANG Lihong, REN Xiaobing. Electrical and Optical Property of Lanthanum Oxide Doped Potassium Sodium Niobate Ceramics [J]. Journal of Inorganic Materials, 2022, 37(5): 520-526. |
[14] | WANG Lielin, XIE Hua, XIE Yuqi, HU Pingtao, YIN Wen, REN Xinyue, DING Yun. Structural Evolution and Chemical Durability of Thorium-incorporated Nd2Zr2O7 Pyrochlore at A and B Sites [J]. Journal of Inorganic Materials, 2022, 37(10): 1073-1078. |
[15] | JING Yanqiu, LIU Qiang, SU Sha, LI Xiaoying, LIU Ziyu, WANG Jingya, LI Jiang. Fabrication of Highly Transparent Co:MgAl2O4 Ceramic Saturable Absorber for Passive Q-switching in 1.5 μm [J]. Journal of Inorganic Materials, 2021, 36(8): 877-882. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||