Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (9): 969-975.DOI: 10.15541/jim20210771
• RESEARCH ARTICLE • Previous Articles Next Articles
LI Wenjun(), WANG Hao(), TU Bingtian, CHEN Qiangguo, ZHENG Kaiping, WANG Weiming, FU Zhengyi
Received:
2021-12-17
Revised:
2022-02-22
Published:
2022-09-20
Online:
2022-06-16
Contact:
WANG Hao, professor. E-mail: shswangh@whut.edu.cnAbout author:
LI Wenjun (1996-), male, Master candidate. E-mail: 15826911464@163.com
Supported by:
CLC Number:
LI Wenjun, WANG Hao, TU Bingtian, CHEN Qiangguo, ZHENG Kaiping, WANG Weiming, FU Zhengyi. Preparation and Property of Mg0.9Al2.08O3.97N0.03 Transparent Ceramic with Broad Optical Transmission Range[J]. Journal of Inorganic Materials, 2022, 37(9): 969-975.
Fig. 1 Characterization of Mg0.9Al2.08O3.97N0.03 powder, slurry, green body, and transparent ceramic (a) XRD patterns of powder and ceramic; (b) Relationship between viscosity of slurry and contents of TAC; (c) Morphology of green body; (d) SEM image of etched surface of transparent ceramic
Fig. 2 Comparison of optical property of transparent ceramics (a) In-line transmittance of Mg0.9Al2.08O3.97N0.03, MgAl2O4, c-plane sapphire[1], Mg0.27Al2.58O3.73N0.27 transparent ceramics[14]; (b) Refractive index of Mg0.9Al2.08O3.97N0.03, MgAl2O4 transparent ceramics[19]
Fig. 4 Fractured strength under different load rates (a) and strength-probability-time diagram (b) of Mg0.9Al2.08O3.97N0.03 and MgAl2O4[27] transparent ceramics Colorful figures are available on website
Sample | Vickers hardness/GPa | Fracture toughness/(MPa·m1/2) | Young’s modulus/GPa | Thermal expansion coefficient/(×10-6, K-1) |
---|---|---|---|---|
MgAl2O4[ | 12.9±0.49 | 1.6±0.1 | 273 | 6.97 |
Mg0.9Al2.08O3.97N0.03 | 13.7±0.12 | 2.12±0.1 | 280 | 6.57 |
Table 1 Property of Mg0.9Al2.08O3.97N0.03 and MgAl2O4 transparent ceramic
Sample | Vickers hardness/GPa | Fracture toughness/(MPa·m1/2) | Young’s modulus/GPa | Thermal expansion coefficient/(×10-6, K-1) |
---|---|---|---|---|
MgAl2O4[ | 12.9±0.49 | 1.6±0.1 | 273 | 6.97 |
Mg0.9Al2.08O3.97N0.03 | 13.7±0.12 | 2.12±0.1 | 280 | 6.57 |
[1] |
RUBAT D M, KLEEBE H J, MÜLLER M M, et al. Fifty years of research and development coming to fruition; unraveling the complex interactions during processing of transparent magnesium aluminate (MgAl2O4) spinel. Journal of the American Ceramic Society, 2013, 96(11): 3341-3365.
DOI URL |
[2] |
WAETZIG K, KRELL A, TRICE R. The effect of composition on the optical properties and hardness of transparent Al-rich MgO·nAl2O3 spinel ceramics. Journal of the American Ceramic Society, 2015, 99(3): 946-953.
DOI URL |
[3] |
SANGHERA J, BAYYA S, VILLALOBOS G, et al. Transparent ceramics for high-energy laser systems. Optical Materials, 2011, 33(3): 511-518.
DOI URL |
[4] |
PAPPAS J M, DONG X Y. Porosity characterization of additively manufactured transparent MgAl2O4 spinel by laser direct deposition. Ceramics International, 2020, 46(5): 6745-6755.
DOI URL |
[5] |
SALEM J A, SGLAVO V. Transparent armor ceramics as spacecraft windows. Journal of the American Ceramic Society, 2013, 96(1): 281-289.
DOI URL |
[6] |
ROTHMAN A, KALABUKHOV S, SVERDLOV N, et al. The effect of grain size on the mechanical and optical properties of spark plasma sintering-processed magnesium aluminate spinel MgAl2O4. International Journal of Applied Ceramic Technology, 2014, 11(1): 146-153.
DOI URL |
[7] |
SOKOL M, KALABUKHOV S, SHNECK R, et al. Effect of grain size on the static and dynamic mechanical properties of magnesium aluminate spinel (MgAl2O4). Journal of the European Ceramic Society, 2017, 37(10): 3417-3424.
DOI URL |
[8] |
NECINA V, PABST W. Grain growth of MgAl2O4 ceramics with LiF and NaF addition. Open Ceramics, 2021, 5(2): 100078.
DOI URL |
[9] |
ZHANG H, WANG H, GU H, et al. Preparation of transparent MgO·1.8Al2O3 spinel ceramics by aqueous gelcasting, presintering and hot isostatic pressing. Journal of the European Ceramic Society, 2018, 38(11): 4057-4063.
DOI URL |
[10] | YAN J, YAN W, CHEN Z, et al. A strategy for controlling microstructure and mechanical properties of microporous spinel (MgAl2O4) aggregates from magnesite and Al(OH)3. Journal of Alloys and Compounds, 2022, 896: 163088. |
[11] | ZHANG P, LIU P, SUN Y, et al. Microstructure and properties of transparent MgAl2O4 ceramic fabricated by aqueous gelcasting. Journal of Alloys and Compounds, 2016, 657: 246-249. |
[12] |
WILLEMS H X, WITH G D, METSELAAR R. Thermodynamics of AlON III: stabilization of AlON with MgO. Journal of the European Ceramic Society, 1993, 12(1): 43-49.
DOI URL |
[13] |
ZONG X, WANG H, GU H, et al. A novel spinel-type Mg0.55Al2.36O3.81N0.19 transparent ceramic with infrared transmittance range comparable to c-plane sapphire. Scripta Materialia, 2020, 178(15): 428-432.
DOI URL |
[14] |
LIU X, WANG H, TU B T, et al. Highly transparent Mg0.27Al2.58O3.73N0.27ceramic prepared by pressureless sintering. Journal of the American Ceramic Society, 2014, 97(1): 63-66.
DOI URL |
[15] |
ZHANG Z, WANG H, TU B T, et al. Characterization and evaluation on mechanical property of Mg0.27Al2.58O3.73N0.27transparent ceramic. Journal of Inorganic Materials, 2018, 33(9): 1006-1010.
DOI |
[16] |
ZONG X, WANG H, GU H, et al. Highly transparent Mg0.27Al2.58O3.73N0.27ceramic fabricated by aqueous gelcasting, pressureless sintering, and post-HIP. Journal of the American Ceramic Society, 2019, 102(11): 6507-6516.
DOI URL |
[17] | GB/T 6569-2006, 精细陶瓷弯曲强度试验方法. |
[18] |
GRANON A, GOEURIOT P, THEVENOT F, et al. Reactivity in the Al2O3-AlN-MgO system. The MgAlON spinel phase. Journal of the European Ceramic Society, 1994, 13(4): 365-370.
DOI URL |
[19] |
KRELL A, HUTZLER T, KLIMKE J. Transmission physics and consequences for materials selection, manufacturing, and applications. Journal of the European Ceramic Society, 2009, 29(2): 207-221.
DOI URL |
[20] |
WEMPLE S H, DIDOMENICO M J. Behavior of the electronic dielectric constant in covalent and ionic materials. Physical Review B, 1971, 3(4): 1338-1351.
DOI URL |
[21] |
CAI B, KAINO T, SUGIHARA O. Sulfonyl-containing polymer and its alumina nanocomposite with high Abbe number and high refractive index. Optical Materials Express, 2015, 5(5): 1210-1216.
DOI URL |
[22] | KLEIN C A. Flexural strength of infrared-transmitting window materials: bimodal Weibull statistical analysis. Optical Engineering, 2011, 50(2): 1-10. |
[23] |
DENG B, JIANG D, GONG J. Is a three-parameter Weibull function really necessary for the characterization of the statistical variation of the strength of brittle ceramics? Journal of the European Ceramic Society, 2018, 38(4): 2234-2242.
DOI URL |
[24] | KHALILI A. Statistical properties of Weibull estimators. Journal of Materials Science, 1991, 26: 6741-6752. |
[25] |
TOKARIEV O, SCHNETTER L, BECK T, et al. Grain size effect on the mechanical properties of transparent spinel ceramics. Journal of the European Ceramic Society, 2013, 33(4): 749-757.
DOI URL |
[26] |
MALZBENDER J, STEINBRECH R W. Threshold fracture stress of thin ceramic components. Journal of the European Ceramic Society, 2008, 28(1): 247-252.
DOI URL |
[27] | TOKARIEV O, STEINBRECH R W, SCHNETTER L, et al. Micro- and macro-mechanical testing of transparent MgAl2O4 spinel. Journal of Materials Science, 2012, 47: 4821-4826. |
[28] | CHOI S R. Slow crack growth analysis of brittle materials with finite thickness subjected to constant stress-rate flexural loading. Journal of Materials Science, 1999, 34: 3875-3882. |
[29] |
RAMOS N D, CAMPOS T M, PAZ I S, et al. Microstructure characterization and SCG of newly engineered dental ceramics. Dental Materials, 2016, 32(7): 870-878.
DOI URL |
[30] | EKATERINA N, KEYUR K, KIRA C, et al. Hall-Petch effect in binary and ternary alumina/zirconia/spinel composites. Journal of Materials Research and Technology, 2021, 11: 823-832. |
[31] | SENTHIL K, BISWAS P, JOHNSON R, et al. Transparent ceramics for ballistic armor applications. Handbook of Advanced Ceramics and Composites, 2020, 11: 435-457. |
[32] |
KRELL A, STRASSBURGER E, HUTZLER T, et al. Single and polycrystalline transparent ceramic armor with different crystal structure. Journal of the American Ceramic Society, 2013, 96(9): 2718-2721.
DOI URL |
[33] |
IQBAL M J, ISMAIL B, RENTENBERGER C, et al. Modification of the physical properties of semiconducting MgAl2O4 by doping with a binary mixture of Co and Zn ions. Materials Research Bulletin, 2011, 46(12): 2271-2277.
DOI URL |
[34] |
REN L, WANG H, TU B T, et al. Investigation on composition- dependent properties of Mg5xAl23-5xO27+5xN5-5x (0≤x≤1): Part II. Mechanical properties via first-principles calculations combined with bond valence models. Journal of the European Ceramic Society, 2021, 41(3): 4942-4950.
DOI URL |
[1] | LI Yue, ZHANG Xuliang, JING Fangli, HU Zhanggui, WU Yicheng. Growth and Property of Ce3+-doped La2CaB10O19 Crystal [J]. Journal of Inorganic Materials, 2023, 38(5): 583-588. |
[2] | JIN Xihai, DONG Manjiang, KAN Yanmei, LIANG Bo, DONG Shaoming. Fabrication of Transparent AlON by Gel Casting and Pressureless Sintering [J]. Journal of Inorganic Materials, 2023, 38(2): 193-198. |
[3] | MU Licheng, YANG Jinping, WANG Junping, ZHAO Jin, LIU Mengwei, WANG Dewen, ZHANG Jian. Preparation of YAG Transparent Ceramics by Epoxy Resin Modified Spontaneous Coagulation Casting [J]. Journal of Inorganic Materials, 2022, 37(9): 941-946. |
[4] | AN Wenran, HUANG Jingqi, LU Xiangrong, JIANG Jianing, DENG Longhui, CAO Xueqiang. Effect of Heat-treatment Temperature on Thermal and Mechanical Properties of LaMgAl11O19 Coating [J]. Journal of Inorganic Materials, 2022, 37(9): 925-932. |
[5] | LIU Qiang, WANG Qian, CHEN Penghui, LI Xiaoying, ZHANG Lixuan, XIE Tengfei, LI Jiang. Fabrication and Characterizations of Red Ce-doped 8YSZ Transparent Ceramics by Two-step Sintering [J]. Journal of Inorganic Materials, 2022, 37(8): 911-917. |
[6] | ZHANG Ye, ZENG Yuping. Progress of Porous Silicon Nitride Ceramics Prepared via Self-propagating High Temperature Synthesis [J]. Journal of Inorganic Materials, 2022, 37(8): 853-864. |
[7] | HONG Du, NIU Yaran, LI Hong, ZHONG Xin, ZHENG Xuebin. Tribological Properties of Plasma Sprayed TiC-Graphite Composite Coatings [J]. Journal of Inorganic Materials, 2022, 37(6): 643-650. |
[8] | XU Puhao, ZHANG Xiangzhao, LIU Guiwu, ZHANG Mingfen, GUI Xinyi, QIAO Guanjun. Microstructure and Mechanical Properties of SiC Joint Brazed by Al-Ti Alloys as Filler Metal [J]. Journal of Inorganic Materials, 2022, 37(6): 683-690. |
[9] | DING Jianxiang, ZHANG Kaige, LIU Dongming, ZHENG Wei, ZHANG Peigen, SUN Zhengming. Ag-based Electrical Contact Material Reinforced by Ti3AlC2 Ceramic and Its Derivative Ti3C2Tx [J]. Journal of Inorganic Materials, 2022, 37(5): 567-573. |
[10] | XIAO Shulin, DAI Zhonghua, LI Dingyan, ZHANG Fanbo, YANG Lihong, REN Xiaobing. Electrical and Optical Property of Lanthanum Oxide Doped Potassium Sodium Niobate Ceramics [J]. Journal of Inorganic Materials, 2022, 37(5): 520-526. |
[11] | WEI Tingting, GAO Xiguang, SONG Yingdong. Response of 2D SiC/SiC Composites Resistivity to Service Environments [J]. Journal of Inorganic Materials, 2022, 37(4): 420-426. |
[12] | SUN Yangshan, YANG Zhihua, CAI Delong, ZHANG Zhengyi, LIU Qi, FANG Shuqing, FENG Liang, SHI Lifen, WANG Youle, JIA Dechang. Crystallization Kinetics, Properties of α-cordierite Based Glass-ceramics Prepared by Glass Powder Sintering [J]. Journal of Inorganic Materials, 2022, 37(12): 1351-1357. |
[13] | JING Yanqiu, LIU Qiang, SU Sha, LI Xiaoying, LIU Ziyu, WANG Jingya, LI Jiang. Fabrication of Highly Transparent Co:MgAl2O4 Ceramic Saturable Absorber for Passive Q-switching in 1.5 μm [J]. Journal of Inorganic Materials, 2021, 36(8): 877-882. |
[14] | DONG Kangjia, JIANG Chen, REN Shaobin, LANG Xiaohu, GAO Rui, YE Hui. Anisotropic Calculation of Mechanical Property of GaAs Crystal [J]. Journal of Inorganic Materials, 2021, 36(6): 645-651. |
[15] | SUN Luchao, ZHOU Cui, DU Tiefeng, WU Zhen, LEI Yiming, LI Jialin, SU Haijun, WANG Jingyang. Directionally Solidified Al2O3/Er3Al5O12 and Al2O3/Yb3Al5O12 Eutectic Ceramics Prepared by Optical Floating Zone Melting [J]. Journal of Inorganic Materials, 2021, 36(6): 652-658. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||