 
 Journal of Inorganic Materials ›› 2025, Vol. 40 ›› Issue (2): 215-224.DOI: 10.15541/jim20240322
Special Issue: 【信息功能】透明与闪烁陶瓷(202506)
• Research Letter • Previous Articles
					
													YE Junhao1,2( ), ZHOU Zhenzhen1,2, HU Chen1,2, WANG Yanbin1,2, JING Yanqiu1,2, LI Tingsong1,2, CHENG Ziqiu1,2, WU Junlin1,2, IVANOV Maxim3,4, HRENIAK Dariusz5, LI Jiang1,2(
), ZHOU Zhenzhen1,2, HU Chen1,2, WANG Yanbin1,2, JING Yanqiu1,2, LI Tingsong1,2, CHENG Ziqiu1,2, WU Junlin1,2, IVANOV Maxim3,4, HRENIAK Dariusz5, LI Jiang1,2( )
)
												  
						
						
						
					
				
Received:2024-07-08
															
							
																	Revised:2024-09-07
															
							
															
							
																	Published:2025-02-20
															
							
																	Online:2024-09-23
															
						Contact:
								LI Jiang, professor. E-mail: lijiang@mail.sic.ac.cnAbout author:YE Junhao (2000-), male, Master candidate. E-mail: yejunhao22@mails.ucas.ac.cn				
													Supported by:CLC Number:
YE Junhao, ZHOU Zhenzhen, HU Chen, WANG Yanbin, JING Yanqiu, LI Tingsong, CHENG Ziqiu, WU Junlin, IVANOV Maxim, HRENIAK Dariusz, LI Jiang. Yb:Sc2O3 Transparent Ceramics Fabricated from Co-precipitated Nano-powders: Microstructure and Optical Property[J]. Journal of Inorganic Materials, 2025, 40(2): 215-224.
| Sample | SBET/(m2·g-1) | DBET/nm | DSEM/nm | DXRD/nm | N1 | 
|---|---|---|---|---|---|
| 5%Yb:Sc2O3 nano-powders | 25 | 58 | 43 | 29 | 6 | 
Table 1 Analysis of particle size and agglomeration degree of 5%Yb:Sc2O3 nano-powders
| Sample | SBET/(m2·g-1) | DBET/nm | DSEM/nm | DXRD/nm | N1 | 
|---|---|---|---|---|---|
| 5%Yb:Sc2O3 nano-powders | 25 | 58 | 43 | 29 | 6 | 
 
																													Fig. 4 FESEM micrographs of thermally etched surfaces of the 5%Yb:Sc2O3 ceramics pre-sintered at different temperatures (a) 1500 ℃; (b) 1550 ℃; (c) 1600 ℃; (d) 1650 ℃; (e) 1700 ℃
 
																													Fig. 6 FESEM micrographs of thermally etched surfaces of the synthesized 5%Yb:Sc2O3 ceramics Ceramics pre-sintered at (a) 1500, (b) 1550, (c) 1600, (d) 1650, and (e) 1700 ℃ before HIP post-treatment at 1700 ℃
 
																													Fig. 9 Absorption and emission cross-sections of the 5%Yb:Sc2O3 transparent ceramics pre-sintered at 1550 ℃ with HIP post-treatment Colorful figure is available on website
| [1] | ZUO J, LIN X. High-power laser systems. Laser & Photonics Reviews, 2022, 16(5): 2100741. | 
| [2] | LIU Z Y, IKESUE A, LI J. Research progress and prospects of rare-earth doped sesquioxide laser ceramics. Journal of the European Ceramic Society, 2021, 41(7): 3895. | 
| [3] | DANSON C N, HAEFNER C, BROMAGE J, et al. Petawatt and exawatt class lasers worldwide. High Power Laser Science and Engineering, 2019, 7: e54. | 
| [4] | SÄNGER J C, PAUW B R, RIECHERS B, et al. Entering a new dimension in powder processing for advanced ceramics shaping. Advanced Materials, 2023, 35(8): 2208653. | 
| [5] | WANG X, YU H, LI P, et al. Femtosecond laser-based processing methods and their applications in optical device manufacturing: a review. Optics & Laser Technology, 2021, 135: 106687. | 
| [6] | ORAZI L, ROMOLI L, SCHMIDT M, et al. Ultrafast laser manufacturing: from physics to industrial applications. CIRP Annals, 2021, 70(2): 543. | 
| [7] | GODARD A. Infrared (2-12 μm) solid-state laser sources: a review. Comptes Rendus. Physique, 2007, 8(10): 1100. | 
| [8] | BRENIER A, BOULON G. Overview of the best Yb3+-doped laser crystals. Journal of Alloys and Compounds, 2001, 323/324: 210. | 
| [9] | BOULON G. Why so deep research on Yb3+-doped optical inorganic materials? Journal of Alloys and Compounds, 2008, 451(1/2): 1. | 
| [10] | RADMARD S, MOSHAII A, PASANDIDEH K. 400 W average power Q-switched Yb:YAG thin-disk-laser. Scientific Reports, 2022, 12(1): 16918. | 
| [11] | PERMIN D A, KURASHKIN S V, NOVIKOVA A V, et al. Synthesis and luminescence properties of Yb-doped Y2O3, Sc2O3 and Lu2O3 solid solutions nanopowders. Optical Materials, 2018, 77: 240. | 
| [12] | LI W W, HUANG H J, MEI B C, et al. Effect of Yb concentration on the microstructures, spectra, and laser performance of Yb:CaF2 transparent ceramics. Journal of the American Ceramic Society, 2020, 103(10): 5787. | 
| [13] | SHANG P, BAI L, WANG S, et al. Research progress on thermal effect of LD pumped solid state laser. Optics & Laser Technology, 2023, 157: 108640. | 
| [14] | TOCI G, HOSTAŠA J, PATRIZI B, et al. Fabrication and laser performances of Yb:Sc2O3 transparent ceramics from different combination of vacuum sintering and hot isostatic pressing conditions. Journal of the European Ceramic Society, 2020, 40(3): 881. | 
| [15] | PERMIN D A, BALABANOV S S, SNETKOV I L, et al. Hot pressing of Yb:Sc2O3 laser ceramics with LiF sintering aid. Optical Materials, 2020, 100: 109701. | 
| [16] | DAI Z F, LIU Q, TOCI G, et al. Fabrication and laser oscillation of Yb:Sc2O3 transparent ceramics from co-precipitated nano-powders. Journal of the European Ceramic Society, 2018, 38(4): 1632. | 
| [17] | MCMILLEN C D, KOLIS J W. Hydrothermal single crystal growth of Sc2O3 and lanthanide-doped Sc2O3. Journal of Crystal Growth, 2008, 310(7/8/9): 1939. | 
| [18] | FORNASIERO L, MIX E, PETERS V, et al. Czochralski growth and laser parameters of RE3+-doped Y2O3 and Sc2O3. Ceramics International, 2000, 26(6): 589. | 
| [19] | LU J, BISSON J F, TAKAICHI K, et al. Yb3+:Sc2O3 ceramic laser. Applied Physics Letters, 2003, 83(6): 1101. | 
| [20] | MERKLE L D, NEWBURGH G A, TER-GABRIELYAN N, et al. Temperature-dependent lasing and spectroscopy of Yb:Y2O3 and Yb:Sc2O3. Optics Communications, 2008, 281(23): 5855. | 
| [21] | LIU Q, DAI Z F, HRENIAK D, et al. Fabrication of Yb:Sc2O3 laser ceramics by vacuum sintering co-precipitated nano-powders. Optical Materials, 2017, 72: 482. | 
| [22] | MA M Z, DONG L L, JING W, et al. Fabrication of transparent Yb:Sc2O3 ceramics by hot isostatic pressing without sintering additive. IOP Conference Series: Materials Science and Engineering, 2019, 678(1): 12080. | 
| [23] | JIANG B X, HU C, LI J, et al. Synthesis and properties of Yb:Sc2O3 transparent ceramics. Journal of Rare Earths, 2011, 29(10): 951. | 
| [24] | GHEORGHE C, LUPEI A, LUPEI V, et al. Intensity parameters of Tm3+ doped Sc2O3 transparent ceramic laser material. Optical Materials, 2011, 33(3): 501. | 
| [25] | PERMIN D A, GAVRISHCHUK E M, KLYUSIK O N, et al. Self-propagating high-temperature synthesis of Sc2O3 nanopowders using different precursors. Advanced Powder Technology, 2016, 27(6): 2457. | 
| [26] | BRAVO A C, LONGUET L, AUTISSIER D, et al. Influence of the powder preparation on the sintering of Yb-doped Sc2O3 transparent ceramics. Optical Materials, 2009, 31(5): 734. | 
| [27] | POIROT N, BREGIROUX D, BOY P, et al. Sintering of nanostructured Sc2O3 ceramics from Sol-Gel-derived nanoparticles. Ceramics International, 2015, 41(3): 3879. | 
| [28] | DONG L L, MA M Z, JING W, et al. Synthesis of highly sinterable Yb:Lu2O3 nanopowders via spray co-precipitation for transparent ceramics. Ceramics International, 2019, 45(15): 19554. | 
| [29] | LI J S, SUN X D, LIU S H, et al. A homogeneous co-precipitation method to synthesize highly sinterability YAG powders for transparent ceramics. Ceramics International, 2015, 41(2): 3283. | 
| [30] | DAI Z, LIU Q, HRENIAK D, et al. Fabrication of Yb:Sc2O3 transparent ceramics from co-precipitated nanopowders: The effect of ammonium hydrogen carbonate to metal ions molar ratio. Optical Materials, 2018, 75: 673. | 
| [31] | WANG Y, LU B, SUN X, et al. Synthesis of nanocrystalline Sc2O3 powder and fabrication of transparent Sc2O3 ceramics. Advances in Applied Ceramics, 2013, 110(2): 95. | 
| [32] | SERIVALSATIT K, BALLATO J. Submicrometer grain-sized transparent erbium-doped scandia ceramics. Journal of the American Ceramic Society, 2010, 93(11): 3657. | 
| [33] | MAYO M J, HAGUE D C, CHEN D J. Processing nanocrystalline ceramics for applications in superplasticity. Materials Science and Engineering: A, 1993, 166(1): 145. | 
| [34] | KIM W, BAKER C, VILLALOBOS G, et al. Synthesis of high purity Yb3+-doped Lu2O3 powder for high power solid-state lasers. Journal of the American Ceramic Society, 2011, 94(9): 3001. | 
| [35] | JIANG N, LIN W P, ZHAO Y, et al. Fabrication and kW-level MOPA laser output of planar waveguide YAG/Yb:YAG/YAG ceramic slab. Journal of the American Ceramic Society, 2018, 102(4): 1758. | 
| [36] | LI X, ZHANG L, HU D, et al. Fabrication and characterizations of Tb3Al5O12-based magneto-optical ceramics. International Journal of Applied Ceramic Technology, 2022, 20(1): 493. | 
| [37] | WANG Y, SUN X D, QIU G M. Synthesis of scandium oxide nano power and fabrication of transparent scandium oxide ceramics. Journal of Rare Earths, 2007, 25: 68. | 
| [38] | LU B, WANG Y, SUN X D, et al. Synthesis of Sc2O3 nanopowders and fabrication of transparent, two-step sintered Sc2O3 ceramics. Advances in Applied Ceramics, 2013, 111(7): 389. | 
| [39] | LI J G, IKEGAMI T, MORI T. Fabrication of transparent, sintered Sc2O3 ceramics. Journal of the American Ceramic Society, 2005, 88(4): 817. | 
| [40] | LU X, JIANG B X, LI J, et al. Synthesis of highly sinterable Yb:Sc2O3 nanopowders for transparent ceramic. Ceramics International, 2013, 39(4): 4695. | 
| [41] | FU G Y, WEI J M, CHEN S X, et al. Preparation of spherical scandium oxide powders by ammonium bicarbonate precipitation. Rare Metal Materials and Engineering, 2023, 52(10): 3417. | 
| [42] | MONSHI A, FOROUGHI M R, MONSHI M R. Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World Journal of Nano Science and Engineering, 2012, 2(3): 154. | 
| [43] | CAO W B, MAO X, YUAN Y, et al. Sintering kinetics of disperse ultrafine equiaxed α-Al2O3 nanoparticles. Journal of the European Ceramic Society, 2017, 37(13): 4005. | 
| [44] | SEELEY Z M, KUNTZ J D, CHEREPY N J, et al. Transparent Lu2O3:Eu ceramics by sinter and HIP optimization. Optical Materials, 2011, 33(11): 1721. | 
| [45] | LIU Q, JING Y Q, SU S, et al. Microstructure and properties of MgAl2O4 transparent ceramics fabricated by hot isostatic pressing. Optical Materials, 2020, 104: 109938. | 
| [46] | TAKAICHI K, YAGI H, BECKER P, et al. New data on investigation of novel laser ceramic on the base of cubic scandium sesquioxide: two-band tunable CW generation of Yb3+:Sc2O3 with laser-diode pumping and the dispersion of refractive index in the visible and near-IR of undoped Sc2O3. Laser Physics Letters, 2007, 4(7): 507. | 
| [47] | KRELL A, KLIMKE J, HUTZLER T. Transparent compact ceramics: inherent physical issues. Optical Materials, 2009, 31(8): 1144. | 
| [48] | DELOACH L D, PAYNE S A, CHASE L L, et al. Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications. IEEE Journal of Quantum Electronics, 1993, 29(4): 1179. | 
| [49] | LU S Z, YANG Q H. Spectroscopic characterization of Yb:Sc2O3 transparent ceramics. Chinese Physics B, 2012, 21(4): 47801. | 
| [50] | LIU Z Y, TOCI G, PIRRI A, et al. Fabrication, microstructures, and optical properties of Yb:Lu2O3 laser ceramics from co-precipitated nano-powders. Journal of Advanced Ceramics, 2020, 9(6): 674. | 
| [51] | FORNASIERO L, MIX E, PETERS V, et al. New oxide crystals for solid state lasers. Crystal Research and Technology, 1999, 34(2): 255. | 
| [52] | GALCERAN M, PUJOL M C, CARVAJAL J J, et al. Structural characterization and ytterbium spectroscopy in Sc2O3 nanocrystals. Journal of Luminescence, 2010, 130(8): 1437. | 
| [1] | LÜ Zhaoyang, XU Yong, YANG Jiuyan, TU Guangsheng, TU Bingtian, WANG Hao. Effect of MgF2 Additive on Preparation and Optical Properties of MgAl1.9Ga0.1O4 Transparent Ceramics [J]. Journal of Inorganic Materials, 2024, 39(5): 531-538. | 
| [2] | GU Junyi, FAN Wugang, ZHANG Zhaoquan, YAO Qin, ZHAN Hongquan. Structure and Optical Property of Pr2O3 Powder Prepared by Reduction [J]. Journal of Inorganic Materials, 2023, 38(7): 771-777. | 
| [3] | LI Yue, ZHANG Xuliang, JING Fangli, HU Zhanggui, WU Yicheng. Growth and Property of Ce3+-doped La2CaB10O19 Crystal [J]. Journal of Inorganic Materials, 2023, 38(5): 583-588. | 
| [4] | JIN Xihai, DONG Manjiang, KAN Yanmei, LIANG Bo, DONG Shaoming. Fabrication of Transparent AlON by Gel Casting and Pressureless Sintering [J]. Journal of Inorganic Materials, 2023, 38(2): 193-198. | 
| [5] | WANG Dewen, WANG Junping, YUAN Houcheng, LIU Zhang, ZHOU Jin, DENG Jiajie, WANG Xin, WU Benhua, ZHANG Jian, WANG Shiwei. Metre-scale Y3Al5O12 (YAG) Transparent Ceramics by Vacuum Reactive Sintering [J]. Journal of Inorganic Materials, 2023, 38(12): 1483-1484. | 
| [6] | LI Wenjun, WANG Hao, TU Bingtian, CHEN Qiangguo, ZHENG Kaiping, WANG Weiming, FU Zhengyi. Preparation and Property of Mg0.9Al2.08O3.97N0.03 Transparent Ceramic with Broad Optical Transmission Range [J]. Journal of Inorganic Materials, 2022, 37(9): 969-975. | 
| [7] | MU Licheng, YANG Jinping, WANG Junping, ZHAO Jin, LIU Mengwei, WANG Dewen, ZHANG Jian. Preparation of YAG Transparent Ceramics by Epoxy Resin Modified Spontaneous Coagulation Casting [J]. Journal of Inorganic Materials, 2022, 37(9): 941-946. | 
| [8] | LIU Qiang, WANG Qian, CHEN Penghui, LI Xiaoying, ZHANG Lixuan, XIE Tengfei, LI Jiang. Fabrication and Characterizations of Red Ce-doped 8YSZ Transparent Ceramics by Two-step Sintering [J]. Journal of Inorganic Materials, 2022, 37(8): 911-917. | 
| [9] | XIAO Shulin, DAI Zhonghua, LI Dingyan, ZHANG Fanbo, YANG Lihong, REN Xiaobing. Electrical and Optical Property of Lanthanum Oxide Doped Potassium Sodium Niobate Ceramics [J]. Journal of Inorganic Materials, 2022, 37(5): 520-526. | 
| [10] | JING Yanqiu, LIU Qiang, SU Sha, LI Xiaoying, LIU Ziyu, WANG Jingya, LI Jiang. Fabrication of Highly Transparent Co:MgAl2O4 Ceramic Saturable Absorber for Passive Q-switching in 1.5 μm [J]. Journal of Inorganic Materials, 2021, 36(8): 877-882. | 
| [11] | ZENG Jianjun, ZHANG Kuibao, CHEN Daimeng, GUO Haiyan, DENG Ting, LIU Kui. Preparation of (La0.2Nd0.2Sm0.2Gd0.2Er0.2)2Zr2O7 High-entropy Transparent Ceramics by Vacuum Sintering [J]. Journal of Inorganic Materials, 2021, 36(4): 418-424. | 
| [12] | LIU Ziyu, TOCI Guido, PIRRI Angela, PATRIZI Barbara, FENG Yagang, CHEN Xiaopu, HU Dianjun, TIAN Feng, WU Lexiang, VANNINI Matteo, LI Jiang. Fabrication and Optical Property of Nd:Lu2O3 Transparent Ceramics for Solid-state Laser Applications [J]. Journal of Inorganic Materials, 2021, 36(2): 210-216. | 
| [13] | HUANG Xinyou, LIU Yumin, LIU Yang, LI Xiaoying, FENG Yagang, CHEN Xiaopu, CHEN Penghui, LIU Xin, XIE Tengfei, LI Jiang. Fabrication and Characterizations of Yb:YAG Transparent Ceramics Using Alcohol-water Co-precipitation Method [J]. Journal of Inorganic Materials, 2021, 36(2): 217-224. | 
| [14] | ZHU Danyang, QIAN Kang, CHEN Xiaopu, HU Zewang, LIU Xin, LI Xiaoying, PAN Yubai, MIHÓKOVÁ Eva, NIKL Martin, LI Jiang. Fine-grained Ce,Y:SrHfO3 Scintillation Ceramics Fabricated by Hot Isostatic Pressing [J]. Journal of Inorganic Materials, 2021, 36(10): 1118-1124. | 
| [15] | FENG Mingxing, WANG Bin, XU Pengyu, TU Bingtian, WANG Hao. Predicting Thermomechanical Properties of MgAl2O4 Transparent Ceramic Based on Bond Valence Models [J]. Journal of Inorganic Materials, 2021, 36(10): 1067-1073. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||