Journal of Inorganic Materials ›› 2015, Vol. 30 ›› Issue (12): 1254-1260.DOI: 10.15541/jim20150096
• Orginal Article • Previous Articles Next Articles
WU Zhi-Li1, 2, LI Yu-Ge1, WU Bi1, LEI Ming-Kai1
Received:
2015-02-12
Revised:
2015-08-15
Published:
2015-12-20
Online:
2015-11-24
About author:
WU Zhi-Li. E-mail: zhiliwu@hunau.edu.cn; zlwu@dlut.edu.cn
Supported by:
CLC Number:
WU Zhi-Li, LI Yu-Ge, WU Bi, LEI Ming-Kai. Microstructure Controlling and Properties of TiAlSiN Nanocomposite Coatings Deposited by Modulated Pulsed Power Magnetron Sputtering[J]. Journal of Inorganic Materials, 2015, 30(12): 1254-1260.
x | Pulsing parameters | Deposition conditions | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
τtotal | τweak1 | (τoff/τon) | τweak2 | (τoff/τon) | τstrong | (τoff/τon) | Pa | Pp | Ip | Vp | |
/μs | /μs | /μs | /μs | /μs | /μs | /μs | /kW | /kW | /A | /V | |
0.25 | 1000 | 200 | 54/6 | 300 | 34/6 | 500 | 10/10 | 2 | 58.78 | 135.73 | 411.83 |
0.50 | 1000 | 200 | 54/6 | 300 | 34/6 | 500 | 10/12 | 2 | 69.61 | 146.48 | 480.65 |
0.67 | 1000 | 200 | 54/6 | 300 | 34/6 | 500 | 10/10 | 2 | 58.11 | 127.12 | 430.66 |
0.67 | 1000 | 200 | 54/6 | 300 | 34/6 | 500 | 10/10 | 4 | 60.66 | 133.38 | 449.18 |
0.67 | 1000 | 200 | 54/6 | 300 | 34/6 | 500 | 10/10 | 1 | 65.30 | 143.81 | 445.07 |
Table 1 Deposition parameters for TiAlSiN coatings deposited by MPPMS
x | Pulsing parameters | Deposition conditions | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
τtotal | τweak1 | (τoff/τon) | τweak2 | (τoff/τon) | τstrong | (τoff/τon) | Pa | Pp | Ip | Vp | |
/μs | /μs | /μs | /μs | /μs | /μs | /μs | /kW | /kW | /A | /V | |
0.25 | 1000 | 200 | 54/6 | 300 | 34/6 | 500 | 10/10 | 2 | 58.78 | 135.73 | 411.83 |
0.50 | 1000 | 200 | 54/6 | 300 | 34/6 | 500 | 10/12 | 2 | 69.61 | 146.48 | 480.65 |
0.67 | 1000 | 200 | 54/6 | 300 | 34/6 | 500 | 10/10 | 2 | 58.11 | 127.12 | 430.66 |
0.67 | 1000 | 200 | 54/6 | 300 | 34/6 | 500 | 10/10 | 4 | 60.66 | 133.38 | 449.18 |
0.67 | 1000 | 200 | 54/6 | 300 | 34/6 | 500 | 10/10 | 1 | 65.30 | 143.81 | 445.07 |
x | Pa/kW | Composition/at% | |||
---|---|---|---|---|---|
N | Al | Si | Ti | ||
0.25 | 2 | 52.0 | 10.7 | 8.5 | 28.8 |
0.50 | 2 | 56.7 | 22.7 | 2.3 | 18.3 |
0.67 | 2 | 53.4 | 22.7 | 12.7 | 11.2 |
0.67 | 4 | 53.5 | 22.6 | 12.6 | 11.2 |
0.67 | 1 | 53.4 | 22.7 | 13.6 | 10.3 |
Table 2 Composition of TiAlSiN coatings deposited by MPPMS
x | Pa/kW | Composition/at% | |||
---|---|---|---|---|---|
N | Al | Si | Ti | ||
0.25 | 2 | 52.0 | 10.7 | 8.5 | 28.8 |
0.50 | 2 | 56.7 | 22.7 | 2.3 | 18.3 |
0.67 | 2 | 53.4 | 22.7 | 12.7 | 11.2 |
0.67 | 4 | 53.5 | 22.6 | 12.6 | 11.2 |
0.67 | 1 | 53.4 | 22.7 | 13.6 | 10.3 |
Fig. 3 XRD patterns of TiAlSiN coatings deposited by MPPMS at fN2= 25% (a) Pa=2 kW, depending on x in the range of 0.25-0.67, and (b) x=0.67, dependent on Pa in the range of 1-4 kW
x | Pa/kW | Hardness/GPa | SD | Young’s modulus/GPa | SD | Wear rate /(×10-5, mm3·N-1·m-1) |
---|---|---|---|---|---|---|
0.25 | 2 | 21.8 | 1.3 | 262.3 | 18.5 | 6.3 |
0.50 | 2 | 28.7 | 3.3 | 329.1 | 46.4 | 4.2 |
0.67 | 2 | 18.0 | 0.2 | 216.5 | 3.8 | 0.6 |
0.67 | 4 | 21.3 | 1.1 | 228.2 | 10.7 | 1.3 |
0.67 | 1 | 16.5 | 0.7 | 193.3 | 11.2 | 4.8 |
Table 3 Nanohardness, Young’s Modulus, and wear rates of TiAlSiN coatings deposited by MPPMS
x | Pa/kW | Hardness/GPa | SD | Young’s modulus/GPa | SD | Wear rate /(×10-5, mm3·N-1·m-1) |
---|---|---|---|---|---|---|
0.25 | 2 | 21.8 | 1.3 | 262.3 | 18.5 | 6.3 |
0.50 | 2 | 28.7 | 3.3 | 329.1 | 46.4 | 4.2 |
0.67 | 2 | 18.0 | 0.2 | 216.5 | 3.8 | 0.6 |
0.67 | 4 | 21.3 | 1.1 | 228.2 | 10.7 | 1.3 |
0.67 | 1 | 16.5 | 0.7 | 193.3 | 11.2 | 4.8 |
[1] | PARLINSKA-WOJTAN M, KARIMI A, CSELLE T, et al. Conventional and high resolution TEM investigation of the microstructure of compositionally graded TiAlSiN thin films. Surf. Coat. Technol., 2004, 177-178(1): 376-381. |
[2] | HOLUBAR P, JILEK M, SIMA M. Present and possible future applications of superhard nanocomposite coatings. Surf. Coat. Technol., 2000, 133-134(1): 145-151. |
[3] | FAGER H, ANDERSSON J M, LU J, et al.Growth of hard amorphous Ti-Al-Si-N thin films by cathodic arc evaporation.Surf. Coat. Technol., 2013, 235(1): 376-382. |
[4] | PENG XIAO, ZHU LIHUI, KUMAR VINEET, et al.Recent progress in physical vapor deposited TiAlSiN coatings.Materials Review, 2014, 28(2): 42-44, 72. |
[5] | KONG MING, YUE JIAN-LING, LI GE-YANG.Research development of hard ceramic nano-multilayer films.Journal of Inorganic Materials, 2010, 25(2): 113-119. |
[6] | ZOU C W, ZHANG J, XIE W, et al.Characterization and properties Ti-Al-Si-N nanocomposite coatings prepared by middle frequency magnetron sputtering.Appl. Surf. Sci., 2011, 257(24): 10372-10738. |
[7] | HARISH C B, MOUMITA G, SHASHIDHARA A, et al.Deposition and characterization of TiAlSiN nanocomposite coatings prepared by reactive pulsed direct current unbalanced magnetronsputtering.Appl. Surf. Sci., 2010, 256(21): 6420-6426. |
[8] | RIBEIRO E, MALCZYK A, CARVALHO S, et al. Effects of ion bombardment on properties of d.c. sputtered superhard (Ti, Si, Al)N nanocompostie coatings. Surf. Coat. Technol., 2002, 151-152(1): 515-520. |
[9] | XUE ZENG-HUI, LI WEI, LIU PING, et al.Influence of VN 2-D inserted layers thickness on microsturcture and mechanical property of TiSiN nanocomposite film.Journal of Inorganic Materials, 2014, 29(10): 1082-1086. |
[10] | VEPREK S, REIPRICH S, LI SHI-ZI.Superhard nanocrystalline composite materials: the TiN/Si3N4 system.Appl. Phys. Lett., 1995, 66(20): 2640-2642. |
[11] | KONG MING, ZHAO WEN-JI, WU XIAO-YAN, et al.Microstructure and mechanical properties of TiN/Si3N4 nanocomposite films.Journal of Inorganic Materials, 2007, 22(3): 539-544. |
[12] | KOUZNETOSOV V, MACAK K, SCHNEIDER J M, et al.A novel pulsed magnetron sputter technique utilizing very high target power densities.Surf. Coat. Technol., 1999, 122(2/3): 290-293. |
[13] | GUDMUNDSSON J T, BRENNING N, LUNDIN D, et al.High power impulse magnetron sputtering discharge.Journal of Vacuum Science and Technology A, 2012, 30(3): 030801-030835. |
[14] | LIN J, SPROUL W D, MOORE J J, et al.Recent advances in modulated pulsed power magnetron sputtering for surface engineering.JOM, 2011, 63(6): 48-58. |
[15] | WU ZHI-LI, ZHU XIAO-PENG, LEI MING-KAI.Progress in depositon priciple and process characteristics of high power pulse magnetron sputtering.China Surface Engineering, 2012, 25(5): 15-20. |
[16] | PHILIPPON D, GODINHO V, NAGY P M, et al.Endurance of TiAlSiN coatings: effect of Si and bias on wear and adhesion.Wear, 2011, 270(7/8): 541-549. |
[17] | KIM GWANG-SEOK, KIM BOM-SOK, LEE SANG-YUL, et al. Effect of Si content on the properties of Ti-Al-Si-N films deposited by closed field unbalanced magnetron sputtering with vertical magnetron sources. Thin Solid Films, 2006, 506-507(1): 128-132. |
[18] | CHEB TIAN, XIE ZHI-WEN, GONG FENG, et al.Correlation between microstructure evolution and high temperature properties of TiAlSiN hard coatings with different Si and Al content.Appl. Surf. Sci., 2014, 314(1): 735-745. |
[19] | MUSIL J, ZEMAN P, DOHNAL P.Ti-Si-N Films with a high content of Si.Plasma Process. Polym., 2007, 4(2): S574-S578. |
[20] | MUSIL J, HRUBY H.Superhard nanocomposite Ti1-xAlxN films prepared by magnetron sputtering.Thin Solid Films, 2000, 365(1): 104-109. |
[21] | LIN J, MOORE J J, SPROUL W D, et al.Modulated pulse power sputtered chromium coatings.Thin Solid Films, 2009, 518(2): 1566-1570. |
[22] | ALAMI J, SARAKINOS K, USLU F, et al.On the relationship between the peak target current and the morphology of chromium nitride thin films deposited by reactive high power pulsed magnetron sputtering.Journal of Physics D: Applied Physics, 2009, 42(1): 015304. |
[23] | MUSIL J.Low-pressure magnetron sputtering.Vacuum, 1998, 50(3-4): 363-372. |
[24] | LIN J, MOORE J J, SPROUL W D, et al.Ion energy and mass distributions of the plasma during modulated pulse power magnetron sputtering.Surf. Coat. Technol., 2009, 203(24): 3676-3685. |
[25] | BOBZIN K, BAGCIVAN N, IMMICH P, et al.Advantages of nanocomposite coatings deposited by high power pulse magnetron sputtering technology.J. Mater. Process. Tech., 2009, 209(1): 165-170. |
[1] | HE Danqi, WEI Mingxu, LIU Ruizhi, TANG Zhixin, ZHAI Pengcheng, ZHAO Wenyu. Heavy-Fermion YbAl3 Materials: One-step Synthesis and Enhanced Thermoelectric Performance [J]. Journal of Inorganic Materials, 2023, 38(5): 577-582. |
[2] | WU Shuang, GOU Yanzi, WANG Yongshou, SONG Quzhi, ZHANG Qingyu, WANG Yingde. Effect of Heat Treatment on Composition, Microstructure and Mechanical Property of Domestic KD-SA SiC Fibers [J]. Journal of Inorganic Materials, 2023, 38(5): 569-576. |
[3] | ZHANG Shuo, FU Qiangang, ZHANG Pei, FEI Jie, LI Wei. Influence of High Temperature Treatment of C/C Porous Preform on Friction and Wear Behavior of C/C-SiC Composites [J]. Journal of Inorganic Materials, 2023, 38(5): 561-568. |
[4] | CHEN Saisai, PANG Yali, WANG Jiaona, GONG Yan, WANG Rui, LUAN Xiaowan, LI Xin. Preparation and Properties of Green-yellow Reversible Electro-thermochromic Fabric [J]. Journal of Inorganic Materials, 2022, 37(9): 954-960. |
[5] | ZHANG Ye, ZENG Yuping. Progress of Porous Silicon Nitride Ceramics Prepared via Self-propagating High Temperature Synthesis [J]. Journal of Inorganic Materials, 2022, 37(8): 853-864. |
[6] | CHENG Weijie, WANG Minglei, LIN Guoqiang. Composition, Structure and Properties of CrAlN-DLC Hard Composite Films Deposited by Arc Ion Plating [J]. Journal of Inorganic Materials, 2022, 37(7): 764-772. |
[7] | HONG Du, NIU Yaran, LI Hong, ZHONG Xin, ZHENG Xuebin. Tribological Properties of Plasma Sprayed TiC-Graphite Composite Coatings [J]. Journal of Inorganic Materials, 2022, 37(6): 643-650. |
[8] | XU Puhao, ZHANG Xiangzhao, LIU Guiwu, ZHANG Mingfen, GUI Xinyi, QIAO Guanjun. Microstructure and Mechanical Properties of SiC Joint Brazed by Al-Ti Alloys as Filler Metal [J]. Journal of Inorganic Materials, 2022, 37(6): 683-690. |
[9] | CHEN Junyun, SUN Lei, JIN Tianye, LUO Kun, ZHAO Zhisheng, TIAN Yongjun. Binderless Layered BN Toughened cBN for Ultra-precision Cutting [J]. Journal of Inorganic Materials, 2022, 37(6): 623-628. |
[10] | XIA Qian, SUN Shihao, ZHAO Yiliang, ZHANG Cuiping, RU Hongqiang, WANG Wei, YUE Xinyan. Effect of Boron Carbide Particle Size Distribution on the Microstructure and Properties of Reaction Bonded Boron Carbide Ceramic Composites by Silicon Infiltration [J]. Journal of Inorganic Materials, 2022, 37(6): 636-642. |
[11] | HUANG Longzhi, YIN Jie, CHEN Xiao, WANG Xinguang, LIU Xuejian, HUANG Zhengren. Selective Laser Sintering of SiC Green Body with Low Binder Content [J]. Journal of Inorganic Materials, 2022, 37(3): 347-352. |
[12] | WU Xishi, ZHU Yunzhou, HUANG Qing, HUANG Zhengren. Effect of Pore Structure of Organic Resin-based Porous Carbon on Joining Properties of Cf/SiC Composites [J]. Journal of Inorganic Materials, 2022, 37(12): 1275-1280. |
[13] | PENG Junhui, TIKHONOV Evgenii. Vacancy on Structures, Mechanical and Electronic Properties of Ternary Hf-Ta-C System: a First-principles Study [J]. Journal of Inorganic Materials, 2022, 37(1): 51-57. |
[14] | SUN Luchao, ZHOU Cui, DU Tiefeng, WU Zhen, LEI Yiming, LI Jialin, SU Haijun, WANG Jingyang. Directionally Solidified Al2O3/Er3Al5O12 and Al2O3/Yb3Al5O12 Eutectic Ceramics Prepared by Optical Floating Zone Melting [J]. Journal of Inorganic Materials, 2021, 36(6): 652-658. |
[15] | HUANG Xinyou, LIU Yumin, LIU Yang, LI Xiaoying, FENG Yagang, CHEN Xiaopu, CHEN Penghui, LIU Xin, XIE Tengfei, LI Jiang. Fabrication and Characterizations of Yb:YAG Transparent Ceramics Using Alcohol-water Co-precipitation Method [J]. Journal of Inorganic Materials, 2021, 36(2): 217-224. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||