Journal of Inorganic Materials ›› 2015, Vol. 30 ›› Issue (12): 1254-1260.DOI: 10.15541/jim20150096
• Orginal Article • Previous Articles Next Articles
WU Zhi-Li1, 2, LI Yu-Ge1, WU Bi1, LEI Ming-Kai1
Received:
2015-02-12
Revised:
2015-08-15
Published:
2015-12-20
Online:
2015-11-24
About author:
WU Zhi-Li. E-mail: zhiliwu@hunau.edu.cn; zlwu@dlut.edu.cn
Supported by:
CLC Number:
WU Zhi-Li, LI Yu-Ge, WU Bi, LEI Ming-Kai. Microstructure Controlling and Properties of TiAlSiN Nanocomposite Coatings Deposited by Modulated Pulsed Power Magnetron Sputtering[J]. Journal of Inorganic Materials, 2015, 30(12): 1254-1260.
x | Pulsing parameters | Deposition conditions | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
τtotal | τweak1 | (τoff/τon) | τweak2 | (τoff/τon) | τstrong | (τoff/τon) | Pa | Pp | Ip | Vp | |
/μs | /μs | /μs | /μs | /μs | /μs | /μs | /kW | /kW | /A | /V | |
0.25 | 1000 | 200 | 54/6 | 300 | 34/6 | 500 | 10/10 | 2 | 58.78 | 135.73 | 411.83 |
0.50 | 1000 | 200 | 54/6 | 300 | 34/6 | 500 | 10/12 | 2 | 69.61 | 146.48 | 480.65 |
0.67 | 1000 | 200 | 54/6 | 300 | 34/6 | 500 | 10/10 | 2 | 58.11 | 127.12 | 430.66 |
0.67 | 1000 | 200 | 54/6 | 300 | 34/6 | 500 | 10/10 | 4 | 60.66 | 133.38 | 449.18 |
0.67 | 1000 | 200 | 54/6 | 300 | 34/6 | 500 | 10/10 | 1 | 65.30 | 143.81 | 445.07 |
Table 1 Deposition parameters for TiAlSiN coatings deposited by MPPMS
x | Pulsing parameters | Deposition conditions | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
τtotal | τweak1 | (τoff/τon) | τweak2 | (τoff/τon) | τstrong | (τoff/τon) | Pa | Pp | Ip | Vp | |
/μs | /μs | /μs | /μs | /μs | /μs | /μs | /kW | /kW | /A | /V | |
0.25 | 1000 | 200 | 54/6 | 300 | 34/6 | 500 | 10/10 | 2 | 58.78 | 135.73 | 411.83 |
0.50 | 1000 | 200 | 54/6 | 300 | 34/6 | 500 | 10/12 | 2 | 69.61 | 146.48 | 480.65 |
0.67 | 1000 | 200 | 54/6 | 300 | 34/6 | 500 | 10/10 | 2 | 58.11 | 127.12 | 430.66 |
0.67 | 1000 | 200 | 54/6 | 300 | 34/6 | 500 | 10/10 | 4 | 60.66 | 133.38 | 449.18 |
0.67 | 1000 | 200 | 54/6 | 300 | 34/6 | 500 | 10/10 | 1 | 65.30 | 143.81 | 445.07 |
x | Pa/kW | Composition/at% | |||
---|---|---|---|---|---|
N | Al | Si | Ti | ||
0.25 | 2 | 52.0 | 10.7 | 8.5 | 28.8 |
0.50 | 2 | 56.7 | 22.7 | 2.3 | 18.3 |
0.67 | 2 | 53.4 | 22.7 | 12.7 | 11.2 |
0.67 | 4 | 53.5 | 22.6 | 12.6 | 11.2 |
0.67 | 1 | 53.4 | 22.7 | 13.6 | 10.3 |
Table 2 Composition of TiAlSiN coatings deposited by MPPMS
x | Pa/kW | Composition/at% | |||
---|---|---|---|---|---|
N | Al | Si | Ti | ||
0.25 | 2 | 52.0 | 10.7 | 8.5 | 28.8 |
0.50 | 2 | 56.7 | 22.7 | 2.3 | 18.3 |
0.67 | 2 | 53.4 | 22.7 | 12.7 | 11.2 |
0.67 | 4 | 53.5 | 22.6 | 12.6 | 11.2 |
0.67 | 1 | 53.4 | 22.7 | 13.6 | 10.3 |
Fig. 3 XRD patterns of TiAlSiN coatings deposited by MPPMS at fN2= 25% (a) Pa=2 kW, depending on x in the range of 0.25-0.67, and (b) x=0.67, dependent on Pa in the range of 1-4 kW
x | Pa/kW | Hardness/GPa | SD | Young’s modulus/GPa | SD | Wear rate /(×10-5, mm3·N-1·m-1) |
---|---|---|---|---|---|---|
0.25 | 2 | 21.8 | 1.3 | 262.3 | 18.5 | 6.3 |
0.50 | 2 | 28.7 | 3.3 | 329.1 | 46.4 | 4.2 |
0.67 | 2 | 18.0 | 0.2 | 216.5 | 3.8 | 0.6 |
0.67 | 4 | 21.3 | 1.1 | 228.2 | 10.7 | 1.3 |
0.67 | 1 | 16.5 | 0.7 | 193.3 | 11.2 | 4.8 |
Table 3 Nanohardness, Young’s Modulus, and wear rates of TiAlSiN coatings deposited by MPPMS
x | Pa/kW | Hardness/GPa | SD | Young’s modulus/GPa | SD | Wear rate /(×10-5, mm3·N-1·m-1) |
---|---|---|---|---|---|---|
0.25 | 2 | 21.8 | 1.3 | 262.3 | 18.5 | 6.3 |
0.50 | 2 | 28.7 | 3.3 | 329.1 | 46.4 | 4.2 |
0.67 | 2 | 18.0 | 0.2 | 216.5 | 3.8 | 0.6 |
0.67 | 4 | 21.3 | 1.1 | 228.2 | 10.7 | 1.3 |
0.67 | 1 | 16.5 | 0.7 | 193.3 | 11.2 | 4.8 |
[1] | PARLINSKA-WOJTAN M, KARIMI A, CSELLE T, et al. Conventional and high resolution TEM investigation of the microstructure of compositionally graded TiAlSiN thin films. Surf. Coat. Technol., 2004, 177-178(1): 376-381. |
[2] | HOLUBAR P, JILEK M, SIMA M. Present and possible future applications of superhard nanocomposite coatings. Surf. Coat. Technol., 2000, 133-134(1): 145-151. |
[3] | FAGER H, ANDERSSON J M, LU J, et al.Growth of hard amorphous Ti-Al-Si-N thin films by cathodic arc evaporation.Surf. Coat. Technol., 2013, 235(1): 376-382. |
[4] | PENG XIAO, ZHU LIHUI, KUMAR VINEET, et al.Recent progress in physical vapor deposited TiAlSiN coatings.Materials Review, 2014, 28(2): 42-44, 72. |
[5] | KONG MING, YUE JIAN-LING, LI GE-YANG.Research development of hard ceramic nano-multilayer films.Journal of Inorganic Materials, 2010, 25(2): 113-119. |
[6] | ZOU C W, ZHANG J, XIE W, et al.Characterization and properties Ti-Al-Si-N nanocomposite coatings prepared by middle frequency magnetron sputtering.Appl. Surf. Sci., 2011, 257(24): 10372-10738. |
[7] | HARISH C B, MOUMITA G, SHASHIDHARA A, et al.Deposition and characterization of TiAlSiN nanocomposite coatings prepared by reactive pulsed direct current unbalanced magnetronsputtering.Appl. Surf. Sci., 2010, 256(21): 6420-6426. |
[8] | RIBEIRO E, MALCZYK A, CARVALHO S, et al. Effects of ion bombardment on properties of d.c. sputtered superhard (Ti, Si, Al)N nanocompostie coatings. Surf. Coat. Technol., 2002, 151-152(1): 515-520. |
[9] | XUE ZENG-HUI, LI WEI, LIU PING, et al.Influence of VN 2-D inserted layers thickness on microsturcture and mechanical property of TiSiN nanocomposite film.Journal of Inorganic Materials, 2014, 29(10): 1082-1086. |
[10] | VEPREK S, REIPRICH S, LI SHI-ZI.Superhard nanocrystalline composite materials: the TiN/Si3N4 system.Appl. Phys. Lett., 1995, 66(20): 2640-2642. |
[11] | KONG MING, ZHAO WEN-JI, WU XIAO-YAN, et al.Microstructure and mechanical properties of TiN/Si3N4 nanocomposite films.Journal of Inorganic Materials, 2007, 22(3): 539-544. |
[12] | KOUZNETOSOV V, MACAK K, SCHNEIDER J M, et al.A novel pulsed magnetron sputter technique utilizing very high target power densities.Surf. Coat. Technol., 1999, 122(2/3): 290-293. |
[13] | GUDMUNDSSON J T, BRENNING N, LUNDIN D, et al.High power impulse magnetron sputtering discharge.Journal of Vacuum Science and Technology A, 2012, 30(3): 030801-030835. |
[14] | LIN J, SPROUL W D, MOORE J J, et al.Recent advances in modulated pulsed power magnetron sputtering for surface engineering.JOM, 2011, 63(6): 48-58. |
[15] | WU ZHI-LI, ZHU XIAO-PENG, LEI MING-KAI.Progress in depositon priciple and process characteristics of high power pulse magnetron sputtering.China Surface Engineering, 2012, 25(5): 15-20. |
[16] | PHILIPPON D, GODINHO V, NAGY P M, et al.Endurance of TiAlSiN coatings: effect of Si and bias on wear and adhesion.Wear, 2011, 270(7/8): 541-549. |
[17] | KIM GWANG-SEOK, KIM BOM-SOK, LEE SANG-YUL, et al. Effect of Si content on the properties of Ti-Al-Si-N films deposited by closed field unbalanced magnetron sputtering with vertical magnetron sources. Thin Solid Films, 2006, 506-507(1): 128-132. |
[18] | CHEB TIAN, XIE ZHI-WEN, GONG FENG, et al.Correlation between microstructure evolution and high temperature properties of TiAlSiN hard coatings with different Si and Al content.Appl. Surf. Sci., 2014, 314(1): 735-745. |
[19] | MUSIL J, ZEMAN P, DOHNAL P.Ti-Si-N Films with a high content of Si.Plasma Process. Polym., 2007, 4(2): S574-S578. |
[20] | MUSIL J, HRUBY H.Superhard nanocomposite Ti1-xAlxN films prepared by magnetron sputtering.Thin Solid Films, 2000, 365(1): 104-109. |
[21] | LIN J, MOORE J J, SPROUL W D, et al.Modulated pulse power sputtered chromium coatings.Thin Solid Films, 2009, 518(2): 1566-1570. |
[22] | ALAMI J, SARAKINOS K, USLU F, et al.On the relationship between the peak target current and the morphology of chromium nitride thin films deposited by reactive high power pulsed magnetron sputtering.Journal of Physics D: Applied Physics, 2009, 42(1): 015304. |
[23] | MUSIL J.Low-pressure magnetron sputtering.Vacuum, 1998, 50(3-4): 363-372. |
[24] | LIN J, MOORE J J, SPROUL W D, et al.Ion energy and mass distributions of the plasma during modulated pulse power magnetron sputtering.Surf. Coat. Technol., 2009, 203(24): 3676-3685. |
[25] | BOBZIN K, BAGCIVAN N, IMMICH P, et al.Advantages of nanocomposite coatings deposited by high power pulse magnetron sputtering technology.J. Mater. Process. Tech., 2009, 209(1): 165-170. |
[1] | FAN Wugang, CAO Xiong, ZHOU Xiang, LI Ling, ZHAO Guannan, ZHANG Zhaoquan. Anticorrosion Performance of 8YSZ Ceramics in Simulated Aqueous Environment of Pressurized Water Reactor [J]. Journal of Inorganic Materials, 2024, 39(7): 803-809. |
[2] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
[3] | JIANG Lingyi, PANG Shengyang, YANG Chao, ZHANG Yue, HU Chenglong, TANG Sufang. Preparation and Oxidation Behaviors of C/SiC-BN Composites [J]. Journal of Inorganic Materials, 2024, 39(7): 779-786. |
[4] | ZHANG Rui, ZHANG Kan, YUAN Mengya, GU Xinlei, ZHENG Weitao. Nitrogen Vacancy Regulated Lattice Distortion on Improvement of (NbMoTaW)Nx Thin Films: Mechanical Properties and Wear Resistance [J]. Journal of Inorganic Materials, 2024, 39(6): 715-725. |
[5] | ZHENG Yawen, ZHANG Cuiping, ZHANG Ruijie, XIA Qian, RU Hongqiang. Fabrication of Boron Carbide Ceramic Composites by Boronic Acid Carbothermal Reduction and Silicon Infiltration Reaction Sintering [J]. Journal of Inorganic Materials, 2024, 39(6): 707-714. |
[6] | XUE Yifan, LI Weijie, ZHANG Zhongwei, PANG Xu, LIU Yu. Process Control of PyC Interphases Microstructure and Uniformity in Carbon Fiber Cloth [J]. Journal of Inorganic Materials, 2024, 39(4): 399-408. |
[7] | SUN Chuan, HE Pengfei, HU Zhenfeng, WANG Rong, XING Yue, ZHANG Zhibin, LI Jinglong, WAN Chunlei, LIANG Xiubing. SiC-based Ceramic Materials Incorporating GNPs Array: Preparation and Mechanical Characterization [J]. Journal of Inorganic Materials, 2024, 39(3): 267-273. |
[8] | ZHENG Jiaqian, LU Xiao, LU Yajie, WANG Yingjun, WANG Zhen, LU Jianxi. Functional Bioadaptability in Medical Bioceramics: Biological Mechanism and Application [J]. Journal of Inorganic Materials, 2024, 39(1): 1-16. |
[9] | MAO Aiqin, LU Wenyu, JIA Yanggang, WANG Ranran, SUN Jing. Flexible Piezoelectric Devices and Their Wearable Applications [J]. Journal of Inorganic Materials, 2023, 38(7): 717-730. |
[10] | HE Danqi, WEI Mingxu, LIU Ruizhi, TANG Zhixin, ZHAI Pengcheng, ZHAO Wenyu. Heavy-Fermion YbAl3 Materials: One-step Synthesis and Enhanced Thermoelectric Performance [J]. Journal of Inorganic Materials, 2023, 38(5): 577-582. |
[11] | WU Shuang, GOU Yanzi, WANG Yongshou, SONG Quzhi, ZHANG Qingyu, WANG Yingde. Effect of Heat Treatment on Composition, Microstructure and Mechanical Property of Domestic KD-SA SiC Fibers [J]. Journal of Inorganic Materials, 2023, 38(5): 569-576. |
[12] | ZHANG Shuo, FU Qiangang, ZHANG Pei, FEI Jie, LI Wei. Influence of High Temperature Treatment of C/C Porous Preform on Friction and Wear Behavior of C/C-SiC Composites [J]. Journal of Inorganic Materials, 2023, 38(5): 561-568. |
[13] | XIE Jiaye, LI Liwen, ZHU Qiang. Contrastive Study on in Vitro Antibacterial Property and Biocompatibility of Three Clinical Pulp Capping Agents [J]. Journal of Inorganic Materials, 2023, 38(12): 1449-1456. |
[14] | LI Jianbo, TIAN Zhen, JIANG Quanwei, YU Lifeng, KANG Huijun, CAO Zhiqiang, WANG Tongmin. Effects of Different Element Doping on Microstructure and Thermoelectric Properties of CaTiO3 [J]. Journal of Inorganic Materials, 2023, 38(12): 1396-1404. |
[15] | WU Dongjiang, ZHAO Ziyuan, YU Xuexin, MA Guangyi, YOU Zhulin, REN Guanhui, NIU Fangyong. Direct Additive Manufacturing of Al2O3-TiCp Composite Ceramics by Laser Directed Energy Deposition [J]. Journal of Inorganic Materials, 2023, 38(10): 1183-1192. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||