Journal of Inorganic Materials ›› 2015, Vol. 30 ›› Issue (12): 1243-1253.DOI: 10.15541/jim20150223
• Orginal Article • Previous Articles Next Articles
Received:
2015-05-11
Revised:
2015-06-10
Published:
2015-12-20
Online:
2015-11-24
About author:
HE Fei. E-mail: hefei@hit.edu.cn
Supported by:
CLC Number:
HE Fei, YU Wan-Jun, FANG Min-Han, HE Xiao-Dong, LI Ming-Wei. An Overview on Silica Aerogels Synthesized by Siloxane Co-precursors[J]. Journal of Inorganic Materials, 2015, 30(12): 1243-1253.
Fig. 6 Synthetic approach of superamphiphobic aerogels[55] (a) The synthesis for the VTMS+VMDMS marshmallow-like gel (MG1); (b) Synthetic approach for the superamphiphobic aerogels (MG2)
Precursors | Strength/ MPa | Elastic modulus/ MPa | Density/ (g·cm-3) | Contact angle/(°) | Thermal conductivity/ (W·m-1·K-1) | Thermostability /℃ |
---|---|---|---|---|---|---|
TMOS | 0.031,compressed, crushed[ | - | 0.12[ | Hydrophilic[ | 0.01~0.03[ | 600[ |
MTMS | >9 MPa, compressed 80%, recovered[ | 0.034~0.062 [ | 0.04~0.1[ | 158~164[ | - | 257[ |
TMOS+PTES a | - | - | 0.15[ | 132[ | - | 520[ |
TMOS+PTES b | - | - | 0.11[ | 121[ | - | 520[ |
TEOS+MTMS a | - | - | 0.107[ | 120[ | - | 435[ |
TEOS+PTES a | - | - | 0.33[ | 129[ | - | 520[ |
TEOS +PTES b | - | - | 0.14[ | 115[ | - | 520[ |
TEOS+HMDZ b | - | - | 0.09[ | 146[ | 0.08[ | 330[ |
MTMS+ DMDMS | ~0.1, compression, recovered | - | - | hydrophobicity | - | 320[ |
VTMS+ VMDMS | ~0.07, compressed 80%, recovered | - | 0.122 | 150, superamphiphobic | - | 170[ |
MTMS+ GPTMS | ~0.17, compressed 35%, recovered | 0.46 | 0.104 | - | 0.0388 | -[ |
MPTMS+ VTMS | compression, recovered | 0.117 | 0.085 | - | 0.047 | -[ |
Table 2 Comparison of performance parameters of silica aerogels prepared by different precursors
Precursors | Strength/ MPa | Elastic modulus/ MPa | Density/ (g·cm-3) | Contact angle/(°) | Thermal conductivity/ (W·m-1·K-1) | Thermostability /℃ |
---|---|---|---|---|---|---|
TMOS | 0.031,compressed, crushed[ | - | 0.12[ | Hydrophilic[ | 0.01~0.03[ | 600[ |
MTMS | >9 MPa, compressed 80%, recovered[ | 0.034~0.062 [ | 0.04~0.1[ | 158~164[ | - | 257[ |
TMOS+PTES a | - | - | 0.15[ | 132[ | - | 520[ |
TMOS+PTES b | - | - | 0.11[ | 121[ | - | 520[ |
TEOS+MTMS a | - | - | 0.107[ | 120[ | - | 435[ |
TEOS+PTES a | - | - | 0.33[ | 129[ | - | 520[ |
TEOS +PTES b | - | - | 0.14[ | 115[ | - | 520[ |
TEOS+HMDZ b | - | - | 0.09[ | 146[ | 0.08[ | 330[ |
MTMS+ DMDMS | ~0.1, compression, recovered | - | - | hydrophobicity | - | 320[ |
VTMS+ VMDMS | ~0.07, compressed 80%, recovered | - | 0.122 | 150, superamphiphobic | - | 170[ |
MTMS+ GPTMS | ~0.17, compressed 35%, recovered | 0.46 | 0.104 | - | 0.0388 | -[ |
MPTMS+ VTMS | compression, recovered | 0.117 | 0.085 | - | 0.047 | -[ |
[1] | RAO A V, BHAGAT S D, HIRASHIMA H, et al.Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor.Journal of Colloid and Interface Science, 2006, 300(1): 279-285. |
[2] | RANDALL J P, MEADOR M A B, JANA S C. Tailoring mechanical properties of aerogels for aerospace applications. ACS Applied Materials & Interfaces, 2011, 3(3): 613-626. |
[3] | KANAMORI K, NAKANISHI K.Controlled pore formation in organotrialkoxysilane-derived hybrids: from aerogels to hierarchically porous monoliths.Chemical Society Reviews, 2011, 40(2): 754-770. |
[4] | MALEKI H, DURÃES L, PORTUGAL A. An overview on silica aerogels synthesis and different mechanical reinforcing strategies.Journal of Non-Crystalline Solids, 2014, 385(2): 55-74. |
[5] | RAO A V, PAJONK G M, BHAGAT S D, et al.Comparative studies on the surface chemical modification of silica aerogels based on various organosilane compounds of the type RnSiX4-n.Journal of Non-Crystalline Solids, 2004, 350(12): 216-223. |
[6] | HAYASE G, KANAMORI K, NAKANISHI K.New flexible aerogels and xerogels derived from methyltrimethoxysilane/ dimethyldimethoxysilane co-precursors.Journal of Materials Chemistry, 2011, 21(43): 17077-17079. |
[7] | GURAV J L, RAO A V, BANGI U K H. Hydrophobic and low density silica aerogels dried at ambient pressure using TEOS precursor. Journal of Alloys and Compounds, 2009, 471(1): 296-302. |
[8] | DONATTI D A, VOLLET D R.Study of the hydrolysis of TEOS-TMOS mixtures under ultrasound stimulation.Journal of Non-Crystalline Solids, 1996, 204(3): 301-304. |
[9] | VOLLET D R, NUNES L M, DONATTI D A, et al.Structural characteristics of silica sonogels prepared with different proportions of TEOS and TMOS.Journal of Non-Crystalline Solids, 2008, 354(14): 1467-1474. |
[10] | LATTHE S S, DHERE S L, KAPPENSTEIN C, et al.Sliding behavior of water drops on Sol-Gel derived hydrophobic silica films. Applied Surface Science, 2010, 256(10): 3259-3264. |
[11] | MAHADIK D B, RAO A V, RAO A P, et al.Effect of concentration of trimethylchlorosilane (TMCS) and hexamethyldisilazane (HMDZ) silylating agents on surface free energy of silica aerogels. Journal of Colloid and Interface Science, 2011, 356(1): 298-302. |
[12] | MAHADIK D B, RAO A V, KUMAR R S. et al. Reduction of processing time by mechanical shaking of the ambient pressure dried TEOS based silica aerogel granules.Journal of Porous Materials, 2012, 19(1): 87-94. |
[13] | GURAV J L, RAO A V, NADARGI D Y.Study of thermal conductivity and effect of humidity on HMDZ modified TEOS based aerogel dried at ambient pressure.Journal of Sol-Gel Science and Technology, 2009, 50(3): 275-280. |
[14] | GURAV J L, NADARGI D Y, RAO A V.Effect of mixed catalysts system on TEOS-based silica aerogels dried at ambient pressure.Applied Surface Science, 2008, 255(5): 3019-3027. |
[15] | GURAV J L, RAO A V, NADARGI D Y, et al.Ambient pressure dried TEOS-based silica aerogels: good absorbents of organic liquids.Journal of Materials Science, 2010, 45(2): 503-510. |
[16] | PARALE V G, MAHADIK D B, MAHADIK S A, et al.Wettability study of surface modified silica aerogels with different silylating agents.Journal of Sol-Gel Science and Technology, 2012, 63(3): 573-579. |
[17] | SHEWALE P M, RAO A V, GURAV J L, et al.Synthesis and characterization of low density and hydrophobic silica aerogels dried at ambient pressure using sodium silicate precursor.Journal of Porous Materials, 2009, 16(1): 101-108. |
[18] | SHEWALE P M, RAO A V, RAO A P.Effect of different trimethyl silylating agents on the hydrophobic and physical properties of silica aerogels.Applied Surface Science, 2008, 254(19): 6902-6907. |
[19] | RAO A P, RAO A V.Modifying the surface energy and hydrophobicity of the low-density silica aerogels through the use of combinations of surface-modification agents.Journal of Materials Science, 2010, 45(1): 51-63. |
[20] | RAO A P, RAO A V, PAJONK G M.Hydrophobic and physical properties of the ambient pressure dried silica aerogels with sodium silicate precursor using various surface modification agents.Applied Surface Science, 2007, 253(14): 6032-6040. |
[21] | BANGI U K H, RAO A P, HIRASHIMA H, et al. Physico-chemical properties of ambiently dried sodium silicate based aerogels catalyzed with various acids.Journal of Sol-Gel Science and Technology, 2009, 50(1): 87-97. |
[22] | GURAV J L, RAO A V, RAO A P, et al.Physical properties of sodium silicate based silica aerogels prepared by single step Sol-Gel process dried at ambient pressure.Journal of Alloys and Compounds, 2009, 476(1): 397-402. |
[23] | LATTHE S S, NADARGI D Y, RAO A V.TMOS based water repellent silica thin films by co-precursor method using TMES as a hydrophobic agent.Applied Surface Science, 2009, 255(6): 3600-3604. |
[24] | LATTHE S S, IMAI H, GANESAN V, et al.Porous superhydrophobic silica films by Sol-Gel process.Microporous and Mesoporous Materials, 2010, 130(1): 115-121. |
[25] | GANBAVLE V V, BANGI U K H, LATTHE S S, et al. Self-cleaning silica coatings on glass by single step Sol-Gel route.Surface & Coatings Technology, 2011, 205(23): 5338-5344. |
[26] | PARALE V G, MAHADIK D B, KAVALE M S, et al.Sol-Gel preparation of PTMS modified hydrophobic and transparent silica coatings.Journal of Porous Materials, 2013, 20(4): 733-739. |
[27] | LATTHE S S, IMAI H, GANESAN V, et al.Ultrahydrophobic silica films by Sol-Gel process.Journal of Porous Materials, 2010, 17(5): 565-571. |
[28] | DHERE S L, LATTHE S S, KAPPENSTEIN C, et al.Transparent water repellent silica films by Sol-Gel process.Applied Surface Science, 2010, 256(11): 3624-3629. |
[29] | LATTHE S S, IMAI H, GANESAN V, et al.Superhydrophobic silica films by Sol-Gel co-precursor method.Applied Surface Science, 2009, 256(1): 217-222. |
[30] | PARALE V G, MAHADIK D B, MAHADIK S A, et al.OTES modified transparent dip coated silica coatings.Ceramics International, 2013, 39(1): 835-840. |
[31] | GUO P, ZHAI S, XIAO Z, et al.One-step fabrication of highly stable, superhydrophobic composites from controllable and low-cost PMHS/TEOS sols for efficient oil cleanup.Journal of Colloid and Interface Science, 2015, 446(5): 155-162. |
[32] | ZHANG X, WU Y, HE S, et al.Structural characterization of sol-gel composites using TEOS/MEMO as precursors.Surface & Coatings Technology, 2007, 201(12): 6051-6058. |
[33] | MAHADIK S A, KAVALE M S, MUKHERJEE S K, et al.Transparent superhydrophobic silica coatings on glass by Sol-Gel method.Applied Surface Science, 2010, 257(2): 333-339. |
[34] | RAO A V, PAJONK G M.Effect of methyltrimethoxysilane as a co-precursor on the optical properties of silica aerogels.Journal of Non-Crystalline Solids, 2001, 285(1): 202-209. |
[35] | RAO A V, KULKARNI M M, AMALNERKAR D P, et al.Surface chemical modification of silica aerogels using various alkyl- alkoxy/chloro silanes. Applied Surface Science, 2003, 206(1): 262-270. |
[36] | RAO A V, KULKARNI M M.Hydrophobic properties of TMOS-TMES-based silica aerogels.Materials Research Bulletin, 2002, 37(9): 1667-1677. |
[37] | RAO A V, Wagh P B.Preparation and characterization of hydrophobic silica aerogels.Materials Chemistry and Physics, 1998, 53(1): 13-18. |
[38] | RAO A V, HARANATH D. Effect of methyltrimethoxysilane as a synthesis component on the hydrophobicity and some physical properties of silica aerogels. Microporous and Mesoporous Materials, 1999, 30(2): 267-273. |
[39] | BHAGAT S D, RAO A V.Surface chemical modification of TEOS based silica aerogels synthesized by two step (acid-base) Sol-Gel process.Applied Surface Science, 2006, 252(12): 4289-4297. |
[40] | NADARGI D Y, KALESH R R, RAO A V.Rapid reduction in gelation time and impregnation of hydrophobic property in the tetraethoxysilane (TEOS) based silica aerogels using NH4F catalyzed single step Sol-Gel process.Journal of Alloys and Compounds, 2009, 480(2): 689-695. |
[41] | HEGDE N D, RAO A V.Organic modification of TEOS based silica aerogels using hexadecyltrimethoxysilane as a hydrophobic reagent.Applied Surface Science, 2006, 253(3): 1566-1572. |
[42] | RAO A V, HEGDE N D, Shewale P M.Imperviousness of the hydrophobic silica aerogels against various solvents and acids.Applied Surface Science, 2007, 253(9): 4137-4141. |
[43] | HUANG S L, CHIN W K, YANG W P.Structural characteristics and properties of silica_poly(2-hydroxyethyl methacrylate) (PHEMA) nanocomposites prepared by mixing colloidal silica or tetraethyloxysilane (TEOS) with PHEMA.Polymer, 2005, 46(6): 1865-1877. |
[44] | LI J, CAO J, YANG M, et al.‘Seeded’ growth of silica aerogel by tetraethoxysilane and trimethylchlorosilane co-precursor method.Journal of Non-Crystalline Solids, 2013, 362(1): 216-221. |
[45] | LI J, CAO J, HUO L, et al.One-step synthesis of hydrophobic silica aerogel via in situ surface modification.Materials Letters, 2012, 87(11): 146-149. |
[46] | LI Z, CHENG X, HE SONG, et al.Preparation of ambient pressure dried MTMS/TEOS co-precursor silica aerogel by adjusting NH4OH concentration.Materials Letters, 2014, 129(8): 12-15. |
[47] | ZHOU B, SHEN J, WU Y, et al.Hydrophobic silica aerogels derived from polyethoxydisiloxane and perfluoroalkylsilane.Materials Science and Engineering C, 2007, 27(5-8): 1291-1294. |
[48] | AL-OWEINI R, EL-RASSY H.Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4 and R″Si(OR′)3 precursors.Journal of Molecular Structure, 2009, 919(1/2/3): 140-145. |
[49] | AL-OWEINI R, EL-RASSY H.Surface characterization by nitrogen adsorption of silica aerogels synthesized from various Si(OR)4 and R″Si(OR′)3 precursors.Applied Surface Science, 2010, 257(1): 276-281. |
[50] | KANAMORI K, AIZAWA M, NAKANISHI K, et al.New transparent methylsilsesquioxane aerogels and xerogels with improved mechanical properties.Advanced Materilals, 2007, 19(12): 1589-1593. |
[51] | KANAMORI K, AIZAWA M, NAKANISHI K, et al.Elastic organic- inorganic hybrid aerogels and xerogels.Journal of Sol-Gel Science and Technology, 2008, 48(1): 172-181. |
[52] | KANAMORI K, NAKANISHI K, HANADA T.Sol-Gel synthesis, porous structure, and mechanical property polymethylsilsesquioxane aerogels.Journal of the Ceramic Society of Japan, 2009, 117(12): 1333-1338. |
[53] | KANAMORI K, KODERA Y, HAYASE G, et al.Transition from transparent aerogels to hierarchically porous monoliths in polymethylsilsesquioxane Sol-Gel system.Journal of Colloid and Interface Science, 2011, 357(2): 336-344. |
[54] | HAYASE G, KANAMORI K, FUKUCHI M, et al.Facile synthesis of marshmallow-like macroporous gels usable under harsh conditions for the separation of oil and water.Angewandte Chemie, 2013, 125(7): 2040-2043. |
[55] | HAYASE G, KANAMORI K, HASEGAWA G, et al.A superamphiphobic macroporous silicone monolith with marshmallow- like flexibility. Angewandte Chemie International Edition, 2013, 52(41): 1-5. |
[56] | ARAVIND P R, NIEMEYER P, RATKE L.Novel flexible aerogels derived from methyltrimethoxysilane/3-(2,3-epoxypropoxy) propyltrimethoxysilane co-precursor.Microporous and Mesoporous Materials, 2013, 181(11): 111-115. |
[57] | WANG Z, DAI Z, WU J J, et al.Vacuum-dried robust bridged silsesquioxane aerogels.Advanced Materilals, 2013, 25(32): 4494-4497. |
[1] | WEI Xiangxia, ZHANG Xiaofei, XU Kailong, CHEN Zhangwei. Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials [J]. Journal of Inorganic Materials, 2024, 39(9): 965-978. |
[2] | YANG Xin, HAN Chunqiu, CAO Yuehan, HE Zhen, ZHOU Ying. Recent Advances in Electrocatalytic Nitrate Reduction to Ammonia Using Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(9): 979-991. |
[3] | LIU Pengdong, WANG Zhen, LIU Yongfeng, WEN Guangwu. Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(9): 992-1004. |
[4] | HUANG Jie, WANG Liuying, WANG Bin, LIU Gu, WANG Weichao, GE Chaoqun. Research Progress on Modulation of Electromagnetic Performance through Micro-nanostructure Design [J]. Journal of Inorganic Materials, 2024, 39(8): 853-870. |
[5] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
[6] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[7] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[8] | WU Xiaochen, ZHENG Ruixiao, LI Lu, MA Haolin, ZHAO Peihang, MA Chaoli. Research Progress on In-situ Monitoring of Damage Behavior of SiCf/SiC Ceramic Matrix Composites at High Temperature Environments [J]. Journal of Inorganic Materials, 2024, 39(6): 609-622. |
[9] | ZHAO Rida, TANG Sufang. Research Progress of Ceramic Matrix Composites Prepared by Improved Reactive Melt Infiltration through Ceramization of Porous Carbon Matrix [J]. Journal of Inorganic Materials, 2024, 39(6): 623-633. |
[10] | FANG Guangwu, XIE Haoyuan, ZHANG Huajun, GAO Xiguang, SONG Yingdong. Progress of Damage Coupling Mechanism and Integrated Design Method for CMC-EBC [J]. Journal of Inorganic Materials, 2024, 39(6): 647-661. |
[11] | ZHANG Xinghong, WANG Yiming, CHENG Yuan, DONG Shun, HU Ping. Research Progress on Ultra-high Temperature Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(6): 571-590. |
[12] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[13] | LI Zongxiao, HU Lingxiang, WANG Jingrui, ZHUGE Fei. Oxide Neuron Devices and Their Applications in Artificial Neural Networks [J]. Journal of Inorganic Materials, 2024, 39(4): 345-358. |
[14] | BAO Ke, LI Xijun. Chemical Vapor Deposition of Vanadium Dioxide for Thermochromic Smart Window Applications [J]. Journal of Inorganic Materials, 2024, 39(3): 233-258. |
[15] | DAI Le, LIU Yang, GAO Xuan, WANG Shuhao, SONG Yating, TANG Mingmeng, DMITRY V Karpinsky, LIU Lisha, WANG Yaojin. Self-polarization Achieved by Compositionally Gradient Doping in BiFeO3 Thin Films [J]. Journal of Inorganic Materials, 2024, 39(1): 99-106. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||