Journal of Inorganic Materials ›› 2015, Vol. 30 ›› Issue (12): 1243-1253.DOI: 10.15541/jim20150223
• Orginal Article • Previous Articles Next Articles
Received:
2015-05-11
Revised:
2015-06-10
Published:
2015-12-20
Online:
2015-11-24
About author:
HE Fei. E-mail: hefei@hit.edu.cn
Supported by:
CLC Number:
HE Fei, YU Wan-Jun, FANG Min-Han, HE Xiao-Dong, LI Ming-Wei. An Overview on Silica Aerogels Synthesized by Siloxane Co-precursors[J]. Journal of Inorganic Materials, 2015, 30(12): 1243-1253.
Fig. 6 Synthetic approach of superamphiphobic aerogels[55] (a) The synthesis for the VTMS+VMDMS marshmallow-like gel (MG1); (b) Synthetic approach for the superamphiphobic aerogels (MG2)
Precursors | Strength/ MPa | Elastic modulus/ MPa | Density/ (g·cm-3) | Contact angle/(°) | Thermal conductivity/ (W·m-1·K-1) | Thermostability /℃ |
---|---|---|---|---|---|---|
TMOS | 0.031,compressed, crushed[ | - | 0.12[ | Hydrophilic[ | 0.01~0.03[ | 600[ |
MTMS | >9 MPa, compressed 80%, recovered[ | 0.034~0.062 [ | 0.04~0.1[ | 158~164[ | - | 257[ |
TMOS+PTES a | - | - | 0.15[ | 132[ | - | 520[ |
TMOS+PTES b | - | - | 0.11[ | 121[ | - | 520[ |
TEOS+MTMS a | - | - | 0.107[ | 120[ | - | 435[ |
TEOS+PTES a | - | - | 0.33[ | 129[ | - | 520[ |
TEOS +PTES b | - | - | 0.14[ | 115[ | - | 520[ |
TEOS+HMDZ b | - | - | 0.09[ | 146[ | 0.08[ | 330[ |
MTMS+ DMDMS | ~0.1, compression, recovered | - | - | hydrophobicity | - | 320[ |
VTMS+ VMDMS | ~0.07, compressed 80%, recovered | - | 0.122 | 150, superamphiphobic | - | 170[ |
MTMS+ GPTMS | ~0.17, compressed 35%, recovered | 0.46 | 0.104 | - | 0.0388 | -[ |
MPTMS+ VTMS | compression, recovered | 0.117 | 0.085 | - | 0.047 | -[ |
Table 2 Comparison of performance parameters of silica aerogels prepared by different precursors
Precursors | Strength/ MPa | Elastic modulus/ MPa | Density/ (g·cm-3) | Contact angle/(°) | Thermal conductivity/ (W·m-1·K-1) | Thermostability /℃ |
---|---|---|---|---|---|---|
TMOS | 0.031,compressed, crushed[ | - | 0.12[ | Hydrophilic[ | 0.01~0.03[ | 600[ |
MTMS | >9 MPa, compressed 80%, recovered[ | 0.034~0.062 [ | 0.04~0.1[ | 158~164[ | - | 257[ |
TMOS+PTES a | - | - | 0.15[ | 132[ | - | 520[ |
TMOS+PTES b | - | - | 0.11[ | 121[ | - | 520[ |
TEOS+MTMS a | - | - | 0.107[ | 120[ | - | 435[ |
TEOS+PTES a | - | - | 0.33[ | 129[ | - | 520[ |
TEOS +PTES b | - | - | 0.14[ | 115[ | - | 520[ |
TEOS+HMDZ b | - | - | 0.09[ | 146[ | 0.08[ | 330[ |
MTMS+ DMDMS | ~0.1, compression, recovered | - | - | hydrophobicity | - | 320[ |
VTMS+ VMDMS | ~0.07, compressed 80%, recovered | - | 0.122 | 150, superamphiphobic | - | 170[ |
MTMS+ GPTMS | ~0.17, compressed 35%, recovered | 0.46 | 0.104 | - | 0.0388 | -[ |
MPTMS+ VTMS | compression, recovered | 0.117 | 0.085 | - | 0.047 | -[ |
[1] | RAO A V, BHAGAT S D, HIRASHIMA H, et al.Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor.Journal of Colloid and Interface Science, 2006, 300(1): 279-285. |
[2] | RANDALL J P, MEADOR M A B, JANA S C. Tailoring mechanical properties of aerogels for aerospace applications. ACS Applied Materials & Interfaces, 2011, 3(3): 613-626. |
[3] | KANAMORI K, NAKANISHI K.Controlled pore formation in organotrialkoxysilane-derived hybrids: from aerogels to hierarchically porous monoliths.Chemical Society Reviews, 2011, 40(2): 754-770. |
[4] | MALEKI H, DURÃES L, PORTUGAL A. An overview on silica aerogels synthesis and different mechanical reinforcing strategies.Journal of Non-Crystalline Solids, 2014, 385(2): 55-74. |
[5] | RAO A V, PAJONK G M, BHAGAT S D, et al.Comparative studies on the surface chemical modification of silica aerogels based on various organosilane compounds of the type RnSiX4-n.Journal of Non-Crystalline Solids, 2004, 350(12): 216-223. |
[6] | HAYASE G, KANAMORI K, NAKANISHI K.New flexible aerogels and xerogels derived from methyltrimethoxysilane/ dimethyldimethoxysilane co-precursors.Journal of Materials Chemistry, 2011, 21(43): 17077-17079. |
[7] | GURAV J L, RAO A V, BANGI U K H. Hydrophobic and low density silica aerogels dried at ambient pressure using TEOS precursor. Journal of Alloys and Compounds, 2009, 471(1): 296-302. |
[8] | DONATTI D A, VOLLET D R.Study of the hydrolysis of TEOS-TMOS mixtures under ultrasound stimulation.Journal of Non-Crystalline Solids, 1996, 204(3): 301-304. |
[9] | VOLLET D R, NUNES L M, DONATTI D A, et al.Structural characteristics of silica sonogels prepared with different proportions of TEOS and TMOS.Journal of Non-Crystalline Solids, 2008, 354(14): 1467-1474. |
[10] | LATTHE S S, DHERE S L, KAPPENSTEIN C, et al.Sliding behavior of water drops on Sol-Gel derived hydrophobic silica films. Applied Surface Science, 2010, 256(10): 3259-3264. |
[11] | MAHADIK D B, RAO A V, RAO A P, et al.Effect of concentration of trimethylchlorosilane (TMCS) and hexamethyldisilazane (HMDZ) silylating agents on surface free energy of silica aerogels. Journal of Colloid and Interface Science, 2011, 356(1): 298-302. |
[12] | MAHADIK D B, RAO A V, KUMAR R S. et al. Reduction of processing time by mechanical shaking of the ambient pressure dried TEOS based silica aerogel granules.Journal of Porous Materials, 2012, 19(1): 87-94. |
[13] | GURAV J L, RAO A V, NADARGI D Y.Study of thermal conductivity and effect of humidity on HMDZ modified TEOS based aerogel dried at ambient pressure.Journal of Sol-Gel Science and Technology, 2009, 50(3): 275-280. |
[14] | GURAV J L, NADARGI D Y, RAO A V.Effect of mixed catalysts system on TEOS-based silica aerogels dried at ambient pressure.Applied Surface Science, 2008, 255(5): 3019-3027. |
[15] | GURAV J L, RAO A V, NADARGI D Y, et al.Ambient pressure dried TEOS-based silica aerogels: good absorbents of organic liquids.Journal of Materials Science, 2010, 45(2): 503-510. |
[16] | PARALE V G, MAHADIK D B, MAHADIK S A, et al.Wettability study of surface modified silica aerogels with different silylating agents.Journal of Sol-Gel Science and Technology, 2012, 63(3): 573-579. |
[17] | SHEWALE P M, RAO A V, GURAV J L, et al.Synthesis and characterization of low density and hydrophobic silica aerogels dried at ambient pressure using sodium silicate precursor.Journal of Porous Materials, 2009, 16(1): 101-108. |
[18] | SHEWALE P M, RAO A V, RAO A P.Effect of different trimethyl silylating agents on the hydrophobic and physical properties of silica aerogels.Applied Surface Science, 2008, 254(19): 6902-6907. |
[19] | RAO A P, RAO A V.Modifying the surface energy and hydrophobicity of the low-density silica aerogels through the use of combinations of surface-modification agents.Journal of Materials Science, 2010, 45(1): 51-63. |
[20] | RAO A P, RAO A V, PAJONK G M.Hydrophobic and physical properties of the ambient pressure dried silica aerogels with sodium silicate precursor using various surface modification agents.Applied Surface Science, 2007, 253(14): 6032-6040. |
[21] | BANGI U K H, RAO A P, HIRASHIMA H, et al. Physico-chemical properties of ambiently dried sodium silicate based aerogels catalyzed with various acids.Journal of Sol-Gel Science and Technology, 2009, 50(1): 87-97. |
[22] | GURAV J L, RAO A V, RAO A P, et al.Physical properties of sodium silicate based silica aerogels prepared by single step Sol-Gel process dried at ambient pressure.Journal of Alloys and Compounds, 2009, 476(1): 397-402. |
[23] | LATTHE S S, NADARGI D Y, RAO A V.TMOS based water repellent silica thin films by co-precursor method using TMES as a hydrophobic agent.Applied Surface Science, 2009, 255(6): 3600-3604. |
[24] | LATTHE S S, IMAI H, GANESAN V, et al.Porous superhydrophobic silica films by Sol-Gel process.Microporous and Mesoporous Materials, 2010, 130(1): 115-121. |
[25] | GANBAVLE V V, BANGI U K H, LATTHE S S, et al. Self-cleaning silica coatings on glass by single step Sol-Gel route.Surface & Coatings Technology, 2011, 205(23): 5338-5344. |
[26] | PARALE V G, MAHADIK D B, KAVALE M S, et al.Sol-Gel preparation of PTMS modified hydrophobic and transparent silica coatings.Journal of Porous Materials, 2013, 20(4): 733-739. |
[27] | LATTHE S S, IMAI H, GANESAN V, et al.Ultrahydrophobic silica films by Sol-Gel process.Journal of Porous Materials, 2010, 17(5): 565-571. |
[28] | DHERE S L, LATTHE S S, KAPPENSTEIN C, et al.Transparent water repellent silica films by Sol-Gel process.Applied Surface Science, 2010, 256(11): 3624-3629. |
[29] | LATTHE S S, IMAI H, GANESAN V, et al.Superhydrophobic silica films by Sol-Gel co-precursor method.Applied Surface Science, 2009, 256(1): 217-222. |
[30] | PARALE V G, MAHADIK D B, MAHADIK S A, et al.OTES modified transparent dip coated silica coatings.Ceramics International, 2013, 39(1): 835-840. |
[31] | GUO P, ZHAI S, XIAO Z, et al.One-step fabrication of highly stable, superhydrophobic composites from controllable and low-cost PMHS/TEOS sols for efficient oil cleanup.Journal of Colloid and Interface Science, 2015, 446(5): 155-162. |
[32] | ZHANG X, WU Y, HE S, et al.Structural characterization of sol-gel composites using TEOS/MEMO as precursors.Surface & Coatings Technology, 2007, 201(12): 6051-6058. |
[33] | MAHADIK S A, KAVALE M S, MUKHERJEE S K, et al.Transparent superhydrophobic silica coatings on glass by Sol-Gel method.Applied Surface Science, 2010, 257(2): 333-339. |
[34] | RAO A V, PAJONK G M.Effect of methyltrimethoxysilane as a co-precursor on the optical properties of silica aerogels.Journal of Non-Crystalline Solids, 2001, 285(1): 202-209. |
[35] | RAO A V, KULKARNI M M, AMALNERKAR D P, et al.Surface chemical modification of silica aerogels using various alkyl- alkoxy/chloro silanes. Applied Surface Science, 2003, 206(1): 262-270. |
[36] | RAO A V, KULKARNI M M.Hydrophobic properties of TMOS-TMES-based silica aerogels.Materials Research Bulletin, 2002, 37(9): 1667-1677. |
[37] | RAO A V, Wagh P B.Preparation and characterization of hydrophobic silica aerogels.Materials Chemistry and Physics, 1998, 53(1): 13-18. |
[38] | RAO A V, HARANATH D. Effect of methyltrimethoxysilane as a synthesis component on the hydrophobicity and some physical properties of silica aerogels. Microporous and Mesoporous Materials, 1999, 30(2): 267-273. |
[39] | BHAGAT S D, RAO A V.Surface chemical modification of TEOS based silica aerogels synthesized by two step (acid-base) Sol-Gel process.Applied Surface Science, 2006, 252(12): 4289-4297. |
[40] | NADARGI D Y, KALESH R R, RAO A V.Rapid reduction in gelation time and impregnation of hydrophobic property in the tetraethoxysilane (TEOS) based silica aerogels using NH4F catalyzed single step Sol-Gel process.Journal of Alloys and Compounds, 2009, 480(2): 689-695. |
[41] | HEGDE N D, RAO A V.Organic modification of TEOS based silica aerogels using hexadecyltrimethoxysilane as a hydrophobic reagent.Applied Surface Science, 2006, 253(3): 1566-1572. |
[42] | RAO A V, HEGDE N D, Shewale P M.Imperviousness of the hydrophobic silica aerogels against various solvents and acids.Applied Surface Science, 2007, 253(9): 4137-4141. |
[43] | HUANG S L, CHIN W K, YANG W P.Structural characteristics and properties of silica_poly(2-hydroxyethyl methacrylate) (PHEMA) nanocomposites prepared by mixing colloidal silica or tetraethyloxysilane (TEOS) with PHEMA.Polymer, 2005, 46(6): 1865-1877. |
[44] | LI J, CAO J, YANG M, et al.‘Seeded’ growth of silica aerogel by tetraethoxysilane and trimethylchlorosilane co-precursor method.Journal of Non-Crystalline Solids, 2013, 362(1): 216-221. |
[45] | LI J, CAO J, HUO L, et al.One-step synthesis of hydrophobic silica aerogel via in situ surface modification.Materials Letters, 2012, 87(11): 146-149. |
[46] | LI Z, CHENG X, HE SONG, et al.Preparation of ambient pressure dried MTMS/TEOS co-precursor silica aerogel by adjusting NH4OH concentration.Materials Letters, 2014, 129(8): 12-15. |
[47] | ZHOU B, SHEN J, WU Y, et al.Hydrophobic silica aerogels derived from polyethoxydisiloxane and perfluoroalkylsilane.Materials Science and Engineering C, 2007, 27(5-8): 1291-1294. |
[48] | AL-OWEINI R, EL-RASSY H.Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4 and R″Si(OR′)3 precursors.Journal of Molecular Structure, 2009, 919(1/2/3): 140-145. |
[49] | AL-OWEINI R, EL-RASSY H.Surface characterization by nitrogen adsorption of silica aerogels synthesized from various Si(OR)4 and R″Si(OR′)3 precursors.Applied Surface Science, 2010, 257(1): 276-281. |
[50] | KANAMORI K, AIZAWA M, NAKANISHI K, et al.New transparent methylsilsesquioxane aerogels and xerogels with improved mechanical properties.Advanced Materilals, 2007, 19(12): 1589-1593. |
[51] | KANAMORI K, AIZAWA M, NAKANISHI K, et al.Elastic organic- inorganic hybrid aerogels and xerogels.Journal of Sol-Gel Science and Technology, 2008, 48(1): 172-181. |
[52] | KANAMORI K, NAKANISHI K, HANADA T.Sol-Gel synthesis, porous structure, and mechanical property polymethylsilsesquioxane aerogels.Journal of the Ceramic Society of Japan, 2009, 117(12): 1333-1338. |
[53] | KANAMORI K, KODERA Y, HAYASE G, et al.Transition from transparent aerogels to hierarchically porous monoliths in polymethylsilsesquioxane Sol-Gel system.Journal of Colloid and Interface Science, 2011, 357(2): 336-344. |
[54] | HAYASE G, KANAMORI K, FUKUCHI M, et al.Facile synthesis of marshmallow-like macroporous gels usable under harsh conditions for the separation of oil and water.Angewandte Chemie, 2013, 125(7): 2040-2043. |
[55] | HAYASE G, KANAMORI K, HASEGAWA G, et al.A superamphiphobic macroporous silicone monolith with marshmallow- like flexibility. Angewandte Chemie International Edition, 2013, 52(41): 1-5. |
[56] | ARAVIND P R, NIEMEYER P, RATKE L.Novel flexible aerogels derived from methyltrimethoxysilane/3-(2,3-epoxypropoxy) propyltrimethoxysilane co-precursor.Microporous and Mesoporous Materials, 2013, 181(11): 111-115. |
[57] | WANG Z, DAI Z, WU J J, et al.Vacuum-dried robust bridged silsesquioxane aerogels.Advanced Materilals, 2013, 25(32): 4494-4497. |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[8] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[9] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[10] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[11] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[12] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[13] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[14] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
[15] | ZHOU Fan, TIAN Zhilin, LI Bin. Research Progress on Carbide Ultra-high Temperature Ceramic Anti-ablation Coatings for Thermal Protection System [J]. Journal of Inorganic Materials, 2025, 40(1): 1-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||