Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (4): 399-408.DOI: 10.15541/jim20230512
• RESEARCH ARTICLE • Previous Articles Next Articles
XUE Yifan1(), LI Weijie2(
), ZHANG Zhongwei1(
), PANG Xu1, LIU Yu3
Received:
2023-11-03
Revised:
2024-01-01
Published:
2024-04-20
Online:
2024-01-08
Contact:
LI Weijie, associate professor. E-mail: wj.li@bjtu.edu.cn;About author:
XUE Yifan (1999-), male, Master candidate. E-mail: 3120211981@bit.edu.cn
Supported by:
CLC Number:
XUE Yifan, LI Weijie, ZHANG Zhongwei, PANG Xu, LIU Yu. Process Control of PyC Interphases Microstructure and Uniformity in Carbon Fiber Cloth[J]. Journal of Inorganic Materials, 2024, 39(4): 399-408.
Group | T/℃ | pC3H6/kPa | τ/s | pH2/kPa |
---|---|---|---|---|
1 | 950 | 5 | 3 | 0 |
2 | 950 | 3 | 3 | 0 |
3 | 950 | 3 | 1 | 0 |
4 | 950 | 1 | 1 | 0 |
5 | 950 | 0.5 | 1 | 0 |
6 | 950 | 1 | 3 | 0 |
7 | 950 | 1 | 0.5 | 0 |
8 | 900 | 3 | 1 | 0 |
9 | 900 | 1 | 0.5 | 0 |
10 | 900 | 1 | 3 | 0 |
11 | 900 | 1 | 1 | 0 |
12 | 850 | 1 | 0.5 | 0 |
13 | 850 | 1 | 1 | 0 |
14 | 850 | 1 | 3 | 0 |
15 | 950 | 3 | 3 | 1.5 |
16 | 950 | 3 | 3 | 3 |
17 | 950 | 1 | 3 | 0.5 |
18 | 950 | 1 | 3 | 1 |
19 | 900 | 3 | 1 | 1.5 |
20 | 900 | 3 | 1 | 3 |
Table 1 Design parameters for experiment
Group | T/℃ | pC3H6/kPa | τ/s | pH2/kPa |
---|---|---|---|---|
1 | 950 | 5 | 3 | 0 |
2 | 950 | 3 | 3 | 0 |
3 | 950 | 3 | 1 | 0 |
4 | 950 | 1 | 1 | 0 |
5 | 950 | 0.5 | 1 | 0 |
6 | 950 | 1 | 3 | 0 |
7 | 950 | 1 | 0.5 | 0 |
8 | 900 | 3 | 1 | 0 |
9 | 900 | 1 | 0.5 | 0 |
10 | 900 | 1 | 3 | 0 |
11 | 900 | 1 | 1 | 0 |
12 | 850 | 1 | 0.5 | 0 |
13 | 850 | 1 | 1 | 0 |
14 | 850 | 1 | 3 | 0 |
15 | 950 | 3 | 3 | 1.5 |
16 | 950 | 3 | 3 | 3 |
17 | 950 | 1 | 3 | 0.5 |
18 | 950 | 1 | 3 | 1 |
19 | 900 | 3 | 1 | 1.5 |
20 | 900 | 3 | 1 | 3 |
Fig. 2 TEM charaterizations of three typical samples (a) SEM image of interphase, (b) HRTEM image of interphase and (c) Fourier transform of HT (Group 2); (d) SEM image of interphase, (e) HRTEM image of interphase and (f) Fourier transform of MT (Group 4); (g) SEM image of interphase, (h) HRTEM image of interphase and (i) Fourier transform of LT (Group 8)
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
XRD FWHM/(°) | 5.522 | 5.495 | 5.217 | 5.664 | 5.809 | 5.579 | 5.469 | 5.805 | 5.883 | 5.942 |
ID/IG | 0.995 | 0.979 | 0.991 | 0.988 | 0.998 | 1.021 | 0.991 | 0.994 | 1.001 | 1.050 |
Texture | HT | MT | LT | |||||||
11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
XRD FWHM/(°) | 5.926 | 6.056 | 5.873 | 5.940 | 5.518 | 5.597 | 5.623 | 5.961 | 5.773 | 5.914 |
ID/IG | 1.028 | 1.031 | 1.037 | 1.033 | 0.978 | 0.974 | 1.011 | 0.992 | 1.012 | 1.003 |
Texture | LT | HT | MT | LT |
Table 2 Summary of XRD FWHM and R (R=ID/IG) for Raman spectra of PyC interphases, and texture classifications
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
XRD FWHM/(°) | 5.522 | 5.495 | 5.217 | 5.664 | 5.809 | 5.579 | 5.469 | 5.805 | 5.883 | 5.942 |
ID/IG | 0.995 | 0.979 | 0.991 | 0.988 | 0.998 | 1.021 | 0.991 | 0.994 | 1.001 | 1.050 |
Texture | HT | MT | LT | |||||||
11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
XRD FWHM/(°) | 5.926 | 6.056 | 5.873 | 5.940 | 5.518 | 5.597 | 5.623 | 5.961 | 5.773 | 5.914 |
ID/IG | 1.028 | 1.031 | 1.037 | 1.033 | 0.978 | 0.974 | 1.011 | 0.992 | 1.012 | 1.003 |
Texture | LT | HT | MT | LT |
[1] | TANG S F, HU C L. Design, preparation and properties of carbon fiber reinforced ultra-high temperature ceramic composites for aerospace applications: a review. Journal of Materials Science & Technology, 2017, 33(2): 117. |
[2] |
SCHMIDT S, BEYER S, KNABE H, et al. Advanced ceramic matrix composite materials for current and future propulsion technology applications. Acta Astronautica, 2004, 55(3-9): 409.
DOI URL |
[3] |
ZHAO D L, GUO T, FAN X M, et al. Effect of pyrolytic carbon interphase on mechanical properties of mini T800-C/SiC composites. Journal of Advanced Ceramics, 2021, 10(2): 219.
DOI |
[4] |
SCHMIDT S, BEYER S, IMMICH H, et al. Ceramic matrix composites: a challenge in space-propulsion technology applications. International Journal of Applied Ceramic Technology, 2005, 2(2): 85.
DOI URL |
[5] |
NIU C, ZHANG Q, CHENG L, et al. Microstructure and mechanical properties of Cf/SiC composites with dispersed C-SiC interphase prepared by chemical vapor infiltration. Composites Part A: Applied Science and Manufacturing, 2023, 165: 107339.
DOI URL |
[6] |
NASLAIN R R, PAILLER R J F, LAMON J L. Single- and multilayered interphases in SiC/SiC composites exposed to severe environmental conditions: an overview. International Journal of Applied Ceramic Technology, 2010, 7(3): 263.
DOI URL |
[7] |
KERANS R J, HAY R S, PARTHASARATHY T A, et al. Interface design for oxidation-resistant ceramic composites. Journal of the American Ceramic Society, 2002, 85(11): 2599
DOI URL |
[8] |
KABEL J, HOSEMANN P, ZAYACHUK Y, et al. Ceramic composites: a review of toughening mechanisms and demonstration of micropillar compression for interface property extraction. Journal of Materials Research, 2018, 33(4): 424.
DOI URL |
[9] |
NASLAIN R, DUGNE O, GUETTE A, et al. Boron-nitride interphase in ceramic-matrix composites. Journal of the American Ceramic Society, 1991, 74(10): 2482.
DOI URL |
[10] |
SU K, CHEN Z K, LI L B, et al. Effects of single-phase and Co-deposited interphases on mechanical hysteresis behavior in T700(TM) mini-Cf/SiC composites. International Journal of Fatigue, 2023, 168: 107473.
DOI URL |
[11] |
NAGARAJA A M, GURURAJA S, UDAYAKUMAR A. Tensile behavior of ceramic matrix minicomposites with engineered interphases fabricated by chemical vapor infiltration. Journal of the European Ceramic Society, 2022, 42(6): 2659.
DOI URL |
[12] |
NASLAIN R, LAMON J, PAILLER R, et al. Micro/minicomposites: a useful approach to the design and development of non-oxide CMCs. Composites Part A: Applied Science and Manufacturing, 1999, 30(4): 537.
DOI URL |
[13] |
CAO X Y, YIN X W, MA X K, et al. Oxidation behavior of SiBC matrix modified C/SiC composites with different PyC interphase thicknesses. Ceramics International, 2015, 41(1): 1695.
DOI URL |
[14] |
DUAN H Z, ZHANG Z W, LI L B, et al. Effect of pyrocarbon interphase texture and thickness on tensile damage and fracture in T-700 (TM) carbon fiber-reinforced silicon carbide minicomposites. Journal of the American Ceramic Society, 2022, 105(3): 2171.
DOI URL |
[15] |
MEI H, BAI Q L, SUN Y Y, et al. The effect of heat treatment on the strength and toughness of carbon fiber/silicon carbide composites with different pyrolytic carbon interphase thicknesses. Carbon, 2013, 57: 288.
DOI URL |
[16] |
REZNIK B, HÜTTINGER K J. On the terminology for pyrolytic carbon. Carbon, 2002, 40(4): 621.
DOI URL |
[17] |
LI W, LI H J, WANG J, et al. Preparation and mechanical properties of carbon/carbon composites with high textured pyrolytic carbon matrix. Transactions of Nonferrous Metals Society of China, 2013, 23(7): 2129.
DOI URL |
[18] |
VALLEROT J M, BOURRAT X, MOUCHON A, et al. Quantitative structural and textural assessment of laminar pyrocarbons through Raman spectroscopy, electron diffraction and few other techniques. Carbon, 2006, 44(9): 1833.
DOI URL |
[19] |
BECKER A, HUTTINGER K J. Chemistry and kinetics of chemical vapor deposition of pyrocarbon-III-pyrocarbon deposition from propylene and benzene in the low temperature regime. Carbon, 1998, 36(3): 201.
DOI URL |
[1] | FAN Wugang, CAO Xiong, ZHOU Xiang, LI Ling, ZHAO Guannan, ZHANG Zhaoquan. Anticorrosion Performance of 8YSZ Ceramics in Simulated Aqueous Environment of Pressurized Water Reactor [J]. Journal of Inorganic Materials, 2024, 39(7): 803-809. |
[2] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
[3] | JIANG Lingyi, PANG Shengyang, YANG Chao, ZHANG Yue, HU Chenglong, TANG Sufang. Preparation and Oxidation Behaviors of C/SiC-BN Composites [J]. Journal of Inorganic Materials, 2024, 39(7): 779-786. |
[4] | ZHAO Rida, TANG Sufang. Research Progress of Ceramic Matrix Composites Prepared by Improved Reactive Melt Infiltration through Ceramization of Porous Carbon Matrix [J]. Journal of Inorganic Materials, 2024, 39(6): 623-633. |
[5] | FANG Guangwu, XIE Haoyuan, ZHANG Huajun, GAO Xiguang, SONG Yingdong. Progress of Damage Coupling Mechanism and Integrated Design Method for CMC-EBC [J]. Journal of Inorganic Materials, 2024, 39(6): 647-661. |
[6] | ZHENG Yawen, ZHANG Cuiping, ZHANG Ruijie, XIA Qian, RU Hongqiang. Fabrication of Boron Carbide Ceramic Composites by Boronic Acid Carbothermal Reduction and Silicon Infiltration Reaction Sintering [J]. Journal of Inorganic Materials, 2024, 39(6): 707-714. |
[7] | LI Guangyu, YUE Yifan, WANG Bo, ZHANG Chengyu, SUO Tao, LI Yulong. Damage of 2D-SiC/SiC Composites under Projectile Impact and Tensile Properties after Impact [J]. Journal of Inorganic Materials, 2024, 39(5): 494-500. |
[8] | SUN Chuan, HE Pengfei, HU Zhenfeng, WANG Rong, XING Yue, ZHANG Zhibin, LI Jinglong, WAN Chunlei, LIANG Xiubing. SiC-based Ceramic Materials Incorporating GNPs Array: Preparation and Mechanical Characterization [J]. Journal of Inorganic Materials, 2024, 39(3): 267-273. |
[9] | TAO Shunyan, YANG Jiasheng, SHAO Fang, WU Yingchen, ZHAO Huayu, DONG Shaoming, ZHANG Xiangyu, XIONG Ying. Thermal Spray Coatings for Aircraft CMC Hot-end Components: Opportunities and Challenges [J]. Journal of Inorganic Materials, 2024, 39(10): 1077-1083. |
[10] | ZHENG Jiaqian, LU Xiao, LU Yajie, WANG Yingjun, WANG Zhen, LU Jianxi. Functional Bioadaptability in Medical Bioceramics: Biological Mechanism and Application [J]. Journal of Inorganic Materials, 2024, 39(1): 1-16. |
[11] | WU Jun, XU Peifei, JING Rui, ZHANG Dahai, FEI Qingguo. Experimental Study on Low-velocity Impact and Residual Strength of SiC/SiC Composite Laminates [J]. Journal of Inorganic Materials, 2024, 39(1): 51-60. |
[12] | HE Danqi, WEI Mingxu, LIU Ruizhi, TANG Zhixin, ZHAI Pengcheng, ZHAO Wenyu. Heavy-Fermion YbAl3 Materials: One-step Synthesis and Enhanced Thermoelectric Performance [J]. Journal of Inorganic Materials, 2023, 38(5): 577-582. |
[13] | WU Shuang, GOU Yanzi, WANG Yongshou, SONG Quzhi, ZHANG Qingyu, WANG Yingde. Effect of Heat Treatment on Composition, Microstructure and Mechanical Property of Domestic KD-SA SiC Fibers [J]. Journal of Inorganic Materials, 2023, 38(5): 569-576. |
[14] | XIE Jiaye, LI Liwen, ZHU Qiang. Contrastive Study on in Vitro Antibacterial Property and Biocompatibility of Three Clinical Pulp Capping Agents [J]. Journal of Inorganic Materials, 2023, 38(12): 1449-1456. |
[15] | LI Jianbo, TIAN Zhen, JIANG Quanwei, YU Lifeng, KANG Huijun, CAO Zhiqiang, WANG Tongmin. Effects of Different Element Doping on Microstructure and Thermoelectric Properties of CaTiO3 [J]. Journal of Inorganic Materials, 2023, 38(12): 1396-1404. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||