邓恒杨1, 秦翠洁1, 郝胜兰1, 冯光迪1,2, 朱秋香1, 田博博1,2, 褚君浩1, 段纯刚1,3
收稿日期:
2025-02-22
修回日期:
2025-03-14
通讯作者:
朱秋香, 副教授. E-mail: qxzhu@clpm.ecnu.edu.cn; 田博博, 教授. E-mail: bbtian@ee.ecnu.edu.cn
作者简介:
邓恒杨(1999-), 男, 硕士研究生. E-mail: 51254700083@stu.ecnu.edu.cn
DENG Hengyang1, QIN Cuijie1, HAO Shenglan1, FENG Guangdi1,2, ZHU Qiuxiang1, TIAN Bobo1,2, CHU Junhao1, DUAN Chungang1,3
Received:
2025-02-22
Revised:
2025-03-14
Contact:
ZHU Qiuxiang, associate professor. E-mail: 51254700083@stu.ecnu.edu.cn;Tian Bobo, professor. E-mail: bbtian@ee.ecnu.edu.cn
About author:
DENG Hengyang (1999-), male, Master candidate. E-mail: 51254700083@stu.ecnu.edu.cn
Supported by:
摘要: 隧穿二极管在太赫兹和可见光频谱的未来整流领域中具有显著的应用前景,这得益于其拥有飞秒级的隧穿渡越时间。本研究呈现了隧穿距离分别为10 nm和5 nm的TiN/ZnO/Pt 鳍式隧道二极管(Fin tunneling diodes, FTD),它们展现出了优异的特性,其中包括超高的不对称性(10 nm器件为1.6×104,5 nm器件为1.6×103)、零偏压下的高响应度(10 nm器件为25.3 V-1,5 nm器件为28.3 V-1),均超越了传统肖特基二极管的热电压限制,并且两个器件的开启电压(Von)极低,都约为100 mV,这使得它们成为能量转换应用的理想之选。基于技术计算机辅助设计(Technology computer-aided design, TCAD)模拟,所观测到的电子传输不对称性可归因于在不同偏置条件下福勒-诺德海姆隧穿(Fowler-Nordheim tunneling, FNT)和陷阱辅助隧穿(Trap-assisted tunneling, TAT)之间的转变,这在相应的能带排列图中得以阐明。此外,通过对FTDs进行集成,本工作设计了一种具有全波整流特性的整流桥电路,其在太赫兹波段(0.1 THz)的整流性能通过Spice电路仿真得到了验证。本研究为太赫兹能量转换和探测应用提供了一种高效的解决方案。
中图分类号:
邓恒杨, 秦翠洁, 郝胜兰, 冯光迪, 朱秋香, 田博博, 褚君浩, 段纯刚. 基于金属-半导体-金属鳍式隧穿二极管的高频整流桥电路[J]. 无机材料学报, DOI: 10.15541/jim20250076.
DENG Hengyang, QIN Cuijie, HAO Shenglan, FENG Guangdi, ZHU Qiuxiang, TIAN Bobo, CHU Junhao, DUAN Chungang. A Rectifier Bridge Circuit Based on Metal-semiconductor-metal Fin Tunneling Diode for High-frequency Application[J]. Journal of Inorganic Materials, DOI: 10.15541/jim20250076.
[1] KHAN A A, JAYASWAL G, GAHAFFAR F A, et al. Metal-insulator-metal diodes with sub-nanometre surface roughness for energy-harvesting applications. Microelectron. Eng., 2017, 181: 34. [2] DRAGOMAN M, ALDRIGO M.Graphene rectenna for efficient energy harvesting at terahertz frequencies.Appl. Phys. Lett., 2016, 109(11): 113105 [3] OLLER D, OSGOOD R, XU J, et al. Optical rectification in a reconfigurable resistive switching filament. Appl. Phys. Lett., 2019, 115(4): 043101. [4] WEERAKKODY A, BELKADI A, MODDEL G.Nonstoichiometric nanolayered Ni/NiO/Al2O3/CrAu metal-insulator-metal infrared rectenna.ACS Appl. Nano Mater., 2021, 4(3): 2470. [5] BELKADI A, WEERAKKODY A, MODDEL G.Demonstration of resonant tunneling effects in metal-double-insulator-metal (MI(2)M) diodes.Nat. Commun., 2021, 12: 2925. [6] SHAYGAN M, WANG Z, ELSAYED M S,et al. High performance metal-insulator-graphene diodes for radio frequency power detection application. Nanoscale, 2017, 9(33): 11944. [7] SANCHEZ A, DAVIS C F, LIU K C,et al. The MOM tunneling diode: Theoretical estimate of its performance at microwave and infrared frequencies. J. Appl. Phys., 1978, 49(10): 5270. [8] NISHIDA Y, NISHIGAMI N, DIEBOLD S,et al. Terahertz coherent receiver using a single resonant tunnelling diode. Sci. Rep., 2019, 9: 18125. [9] MITROVIC I Z, ALMALKI S, TEKIN S B,et al. Oxides for rectenna technology. Materials (Basel), 2021, 14(18): 5218. [10] ALSHEHRI A H, MISTRY K, NGUYEN V H,et al. Quantum-tunneling metal-insulator-metal diodes made by rapid atmospheric pressure chemical vapor deposition. Adv. Funct. Mater., 2018, 29(7): 1805533. [11] ANDERSON E C, BOUGHER T L, COLA B A.High performance multiwall carbon nanotube-insulator-metal tunnel diode arrays for optical rectification.Adv. Electron. Mater., 2018, 4(3): 1700446. [12] ALSHEHRI A H, SHAHIN A, MISTRY K,et al. Metal-insulator-insulator-metal diodes with responsivities greater than 30 A·W-1 based on nitrogen-doped TiOx and AlOx insulator layers. Adv. Electron. Mater., 2021, 7(11): 2100467. [13] ALIMARDANI N, CONLEY J F.Enhancing metal-insulator-insulator-metal tunnel diodesvia defect enhanced direct tunneling. Appl. Phys. Lett., 2014, 105(8): 082902. [14] SHRIWASTAVA S, TRIPATHI C C.Metal-insulator-metal diodes: a potential high frequency rectifier for rectenna application.J. Electron. Mater., 2019, 48(5): 2635. [15] ZHANG X, GRAJAL J, VAZQUEZ-ROY J L,et al. Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting. Nature, 2019, 566(7744): 368. [16] HOLDEN K E K, QI Y, CONLEY J F. Precision defect engineering of metal/insulator/metal diodes using atomic layer deposition to localize Ni impurities in Al2O3 tunnel barriers.J. Appl. Phys., 2021, 129(14): 144502. [17] SINGH A, RATNADURAI R, KUMAR R,et al. Fabrication and current-voltage characteristics of NiOx/ZnO based MIIM tunnel diode. Appl. Surf. Sci., 2015, 334: 197. [18] RATNADURAI R, KRISHNAN S, STEFANAKOS E, et al.Nanomanufacturability of Thin Film MIM Diodes. In: AIP Conference Proceedings. vol. 1313: American Institute of Physics; 2010: 403-405. [19] PERIASAMY P, BERRY J J, DAMERON A A,et al. Fabrication and characterization of MIM diodes based on Nb/Nb2O5 via a rapid screening technique. Adv. Mater., 2011, 23(27): 3080. [20] PERIASAMY P, GUTHREY H L, ABDULAGATOV A I,et al. Metal-insulator-metal diodes: role of the insulator layer on the rectification performance. Adv. Mater., 2013, 25(9): 1301. [21] MISTRY K, YAVUZ M, MUSSELMAN K P.Simulated electron affinity tuning in metal-insulator-metal (MIM) diodes.J. Appl. Phys., 2017, 121(18): 184504. [22] OZYIGIT D, ULLAH F, GULSARAN A,et al. Manufacturing of quantum-tunneling MIM nanodiodes via rapid atmospheric CVD in terahertz band. Sci. Rep., 2023, 13: 20733. [23] WARD D R, HUSER F, PAULY F,et al. Optical rectification and field enhancement in a plasmonic nanogap. Nat. Nanotechnol., 2010, 5(10): 732. [24] LIU Z, ABE S, SHIMIZU M,et al. Enhanced current density and asymmetry of metal-insulator-metal diodes based on self-assembly of Pt nanoparticles. Appl. Phys. Lett., 2023, 122(9): 093502 [25] HERNER S B, WEERAKKODY A D, BELKADI A,et al. High performance MIIM diode based on cobalt oxide/titanium oxide. Appl. Phys. Lett., 2017, 110(22): 223901. [26] MITROVIC I Z, WEERAKKODY A D, SEDGHI N,et al. Controlled modification of resonant tunneling in metal-insulator-insulator-metal structures. Appl. Phys. Lett., 2018, 112(1): 012902. [27] ALSHEHRI A H, ASGARIMOGHADDAM H, DELUMEAU L V,et al. Combinatorial optimization of metal-insulator-insulator-metal (MIIM) diodes with thickness-gradient films via spatial atomic layer deposition. Adv. Electron. Mater., 2024, 10(11): 2400093. [28] FENG G, ZHU Q, LIU X,et al. A ferroelectric fin diode for robust non-volatile memory. Nat. Commun., 2024, 15: 513. [29] LIU X, FENG G, FENG X, et al. Ultrahigh rectification ratio in an asymmetric metal/semiconductor/metal nanoscale tunneling junction: implications for high-frequency rectifiers. ACS Appl. Nano Mater., 2023, 6(4): 2491. [30] LIU H, ZHANG L, LEBEGUE S,et al. Morphology-electronic effects in ultra-model nanocatalysts under the CO oxidation reaction: the case of ZnO ultrathin films grown on Pt(111). Nanoscale, 2024, 16(43): 20216. [31] CHEN T, YU K, HU H,et al. Engineering electron transport layer with ionic liquid for high-performance quantum dot light-emitting diodes. ACS Appl. Nano Mater., 2025, 8(9): 4573. [32] SHINDE P, HASE Y, DOIPHODE V,et al. Morphology-dependent ZnO/MoS2 heterostructures for enhanced photoelectrochemical water splitting. ACS Appl. Energy Mater., 2025, 8(2): 935. [33] ALIMARDANI N, KING S W, FRENCH B L, et al. Investigation of the impact of insulator material on the performance of dissimilar electrode metal-insulator-metal diodes. J. Appl. Phys., 2014, 116(2): 024508. [34] CONG X, ZHENG Y, HUANG F,et al. Efficiently band-tailored type-III van der Waals heterostructure for tunnel diodes and optoelectronic devices. Nano Research, 2022, 15(9): 8442. [35] LEE G-H, YU Y-J, LEE C,et al. Electron tunneling through atomically flat and ultrathin hexagonal boron nitride. Appl. Phys. Lett., 2011, 99(24): 243114 [36] MA Q, ANDERSEN T I, NAIR N L,et al. Tuning ultrafast electron thermalization pathways in a van der Waals heterostructure. Nat. Phys., 2016, 12(5): 455. [37] VU Q A, LEE J H, NGUYEN V L, et al. Tuning carrier tunneling in van der waals heterostructures for ultrahigh detectivity. Nano Lett., 2017, 17(1): 453. [38] TEKIN S B, ALMALKI S, FINCH H,et al. Electron affinity of metal oxide thin films of TiO2, ZnO, and NiO and their applicability in 28.3 THz rectenna devices. J. Appl. Phys., 2023, 134(8): 084503. [39] FOWLER R H, NORDHEIM L.Electron emission in intense electric fields.Proc. Roy. Soc. A, 1928, 119(791): 173. [40] YU S, GUAN X, WONG H S P. Conduction mechanism of TiN/HfOx/Pt resistive switching memory: a trap-assisted-tunneling model.Appl. Phys. Lett., 2011, 99(6): 063507 [41] CHANG W J, HOUNG M P, WANG Y H.Electrical properties and modeling of ultrathin impurity-doped silicon dioxides.J. Appl. Phys., 2001, 90(10): 5171. [42] TSIARAPAS C, GIRGINOUDI D, DIMITRIADIS E I,et al. Investigation on deep level defects in polycrystalline ZnO thin films. J. Vac. Sci. Tech. B, 2017, 35(3): 031203. |
[1] | 马景阁, 吴成铁. 无机生物材料用于毛囊和毛发再生的研究[J]. 无机材料学报, 2025, 40(8): 901-910. |
[2] | 张洪健, 赵梓壹, 吴成铁. 无机生物材料调控神经细胞功能及神经化组织再生的研究进展[J]. 无机材料学报, 2025, 40(8): 849-859. |
[3] | 罗晓民, 乔志龙, 刘颍, 杨晨, 常江. 无机生物活性材料调控心肌再生的研究进展[J]. 无机材料学报, 2025, 40(8): 871-887. |
[4] | 马文平, 韩雅卉, 吴成铁, 吕宏旭. 无机活性材料在类器官研究领域的应用[J]. 无机材料学报, 2025, 40(8): 888-900. |
[5] | 余乐洋阳, 赵芳霞, 张舒心, 徐以祥, 牛亚然, 张振忠, 郑学斌. 感应等离子球化技术制备喷涂用高熵硼化物粉体[J]. 无机材料学报, 2025, 40(7): 808-816. |
[6] | 杨光, 张楠, 陈舒锦, 王义, 谢安, 严育杰. 基于多孔ITO电极的WO3薄膜的制备及其电致变色性能[J]. 无机材料学报, 2025, 40(7): 781-789. |
[7] | 孙晶, 李翔, 毛小建, 章健, 王士维. 月桂酸改性剂对氮化铝粉体抗水解性能的影响[J]. 无机材料学报, 2025, 40(7): 826-832. |
[8] | 柴润宇, 张镇, 王孟龙, 夏长荣. 直接组装法制备氧化铈基金属支撑固体氧化物燃料电池[J]. 无机材料学报, 2025, 40(7): 765-771. |
[9] | 王鲁杰, 张玉新, 李彤阳, 于源, 任鹏伟, 王建章, 汤华国, 姚秀敏, 黄毅华, 刘学建, 乔竹辉. 深海服役环境下碳化硅陶瓷材料的腐蚀及磨损行为[J]. 无机材料学报, 2025, 40(7): 799-807. |
[10] | 汤新丽, 丁自友, 陈俊锐, 赵刚, 韩颖超. 基于稀土铕离子荧光标记的磷酸钙纳米材料体内分布与代谢研究[J]. 无机材料学报, 2025, 40(7): 754-764. |
[11] | 王晓波, 朱于良, 薛稳超, 史汝川, 骆柏锋, 罗骋韬. PT含量变化对PMN-PT单晶的大功率性能影响[J]. 无机材料学报, 2025, 40(7): 840-846. |
[12] | 胡智超, 杨鸿宇, 杨鸿程, 孙成礼, 杨俊, 李恩竹. P-V-L键理论在微波介质陶瓷性能调控中的应用[J]. 无机材料学报, 2025, 40(6): 609-626. |
[13] | 董晨雨, 郑维杰, 马一帆, 郑春艳, 温峥. 压电力显微镜表征Pb(Mg,Nb)O3-PbTiO3超薄膜弛豫特性[J]. 无机材料学报, 2025, 40(6): 675-682. |
[14] | 何国强, 张恺恒, 王震涛, 包健, 席兆琛, 方振, 王昌昊, 王威, 王鑫, 姜佳沛, 李祥坤, 周迪. Ba(Nd1/2Nb1/2)O3: 一种被低估的K40微波介质陶瓷[J]. 无机材料学报, 2025, 40(6): 639-646. |
[15] | 张家维, 陈宁, 程原, 王博, 朱建国, 金城. Bi4Ti3O12铋层状压电陶瓷的A/B位掺杂及其电学性能[J]. 无机材料学报, 2025, 40(6): 690-696. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||