• •
李成明, 周闯, 刘鹏, 郑礼平, 赖泳机, 陈良贤, 刘金龙, 魏俊俊
收稿日期:
2025-03-05
修回日期:
2025-03-31
作者简介:
李成明(1962-), 教授. E-mail: chengmli@mater.ustb.edu.cn
LI Chengming, ZHOU Chuang, LIU Peng, ZHENG Liping, LAI Yongji, CHEN Liangxian, LIU Jinlong, WEI Junjun
Received:
2025-03-05
Revised:
2025-03-31
About author:
LI Chengming (1962-), professor. E-mail: chengmli@mater.ustb.edu.cn
摘要: 金刚石具有优异的性能,在光学、电子器件热管理领域及宽禁带半导体领域有着广阔的应用前景,被誉为终代半导体。作为光学窗口需要大尺寸、厚度2 mm以上的CVD金刚石自支撑厚膜;在半导体散热中,则需要4英寸以上、100微米厚的金刚石自支撑膜与GaN等半导体材料进行键合。但由于技术限制,大面积CVD金刚石膜的合成及应用依旧存在较大困难。一方面,沉积过程中应力会导致金刚石膜发生破裂;另一方面,残余应力会导致金刚石膜发生翘曲,导致键合质量差。因此,对金刚石膜应力的控制成为目前金刚石膜规模化、大范围应用的一个关键问题。本文综述了CVD金刚石应力的分类、来源和以及影响应力的各种因素等,详细介绍了抑制金刚石膜应力的措施。同时,总结了通过人为施加应力来改善金刚石性能的研究,包括应力改变金刚石带隙、应力提高金刚石热导率等。最后,给出了评价金刚石应力大小的方法及理论计算公式,并分析了未来金刚石膜应力研究的趋势。
中图分类号:
李成明, 周闯, 刘鹏, 郑礼平, 赖泳机, 陈良贤, 刘金龙, 魏俊俊. CVD金刚石膜应力的产生、抑制、应用及测量[J]. 无机材料学报, DOI: 10.15541/jim20250094.
LI Chengming, ZHOU Chuang, LIU Peng, ZHENG Liping, LAI Yongji, CHEN Liangxian, LIU Jinlong, WEI Junjun. Generation, Suppression, Application and Measurement of Stress in CVD Diamond Films[J]. Journal of Inorganic Materials, DOI: 10.15541/jim20250094.
[1] INYUSHKIN A V, TALDENKOV A N, RALCHENKO V G, et al.Thermal conductivity of high purity synthetic single crystal diamonds. Physical Review B, 2018, 97(14): 144305. [2] MARTIN H, REINTJES M, REIJS D, et al.Heterogeneous Integration of Diamond Heat Spreaders for Power Electronics Application. IEEE 73rd Electronic Components and Technology Conference (ECTC), Orlando, FL, 2023: 118-125 [3] HOTCHANDANI V, MATHEW B, YESUDASAN S, et al.Thermo-hydraulic characteristics of novel MEMS heat sink. Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, 2021, 27(1): 145. [4] LEE V Y S, KARAYIANNIS T G. Effect of inlet subcooling on flow boiling in microchannels. Applied Thermal Engineering, 2020, 181: 115966. [5] SHAPIRA S, NIRENBERG N, IEEE. Performance envelope enabled by CVD diamond heatspreader integration in semiconductor chips. IEEE International Conference on Microwaves, Communications, Antennas, Biomedical Engineering and Electronic Systems (COMCAS), Tel Aviv, ISRAEL, 2024: 1-6 [6] SHAPIRA S.Performance Enhancement of Integrated Circuits and Power Devices via Embedded Diamond Heat Management. IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS), Tel Aviv, ISRAEL, 2021: 470-472 [7] LIU C.Stress Response and Physical Properties of Diamondunder Complex Strain. Changchun:Jilin University, Doctoral dissertation, 2020. [8] ZHANG S L, YE Z H, ZHU Y, et al.Enhanced optical properties of CVD diamond through HPHT annealing. Crystal Growth & Design, 2024, 24(16): 6701. [9] FERREIRA N G, ABRAMOF E, CORAT E J, et al.Residual stresses and crystalline quality of heavily boron-doped diamond films analysed by micro-Raman spectroscopy and X-ray diffraction. Carbon, 2003, 41(6): 1301. [10] HUANG Y S, LOU C P, QIU W Q.Crystal defects and impurities of CVD diamond films. China Surface Engineering, 2004(1): 5. [11] GRAY K J, WINDISCHMANN H.Free-standing CVD diamond wafers for thermal management by d.c. arc jet technology. Diamond & Related Materials, 1999, 8(2-5): 903. [12] JEONG J H, LEE S Y, LEE W S, et al.Mechanical analysis for crack-free release of chemical-vapor-deposited diamond wafers. Diamond and Related Materials, 2002, 11(8): 1597. [13] LEIGH W G S, CUENCA J A, THOMAS E L H, et al. Mapping the effect of substrate temperature inhomogeneity during microwave plasma-enhanced chemical vapour deposition nanocrystalline diamond growth. Carbon, 2023, 201: 328. [14] GEORGE C.Numerical Simulation of a Multicomponent Non-transferred Constricted Direct Current Arc with a Supersonic Plasma Jet. Minnesota, United States: University of Minnesota, PhD, 1998. [15] FAN Y D, ZHOU Z F.Crystal defects and impurities of CVD diamond films. Journal of Materials Science and Engineering(Materials Science & Engineering), 1996(1): 5. [16] NAKAMURA Y, SAKAGAMI S, AMAMOTO Y, et al.Measurement of internal stresses in CVD diamond films. Thin Solid Films, 1997, 308: 249. [17] SCARDI P, LEONI M, SESSA V, et al.Residual Stress in Diamond Coatings by Synchrotron Radiation XRD. European Powder Diffraction: Epdic Iv, Pts 1 and 2, Stafa-Zurich, 1996: 451-456 [18] WENG J, LIU F, XIONG L W, et al.Deposition of large area uniform diamond films by microwave plasma CVD. Vacuum, 2018, 147: 134. [19] SCHRECK M, BAUR T, FEHLING R, et al.Modification of diamond film growth by a negative bias voltage in microwave plasma chemical vapor deposition. Diamond and Related Materials, 1998, 7(2-5): 293. [20] LIU P, SHAO S, YANG Z, et al.The uniform and robust 8-inch CVD diamond plate generated by dual-magnetic field controlled DC Jet CVD. Diamond and Related Materials, 2024, 141: 110670. [21] HUANG Y, CHEN L, SHAO S, et al.The 7-in. freestanding diamond thermal conductive film fabricated by DC arc Plasma Jet CVD with multi-stage magnetic fields. Diamond and Related Materials, 2022, 122: 108812. [22] FERREIRA N G, ABRAMOF E, LEITE N F, et al.Analysis of residual stress in diamond films by X-ray diffraction and micro-Raman spectroscopy. Journal of Applied Physics, 2002, 91(4): 2466. [23] LONG F, WEI Q P, YU Z M, et al.Effects of temperature and Mo2C layer on stress and structural properties in CVD diamond film grown on Mo foil. Journal of Alloys and Compounds, 2013, 579: 638. [24] WOEHRL N, HIRTE T, POSTH O, et al.Investigation of the coefficient of thermal expansion in nanocrystalline diamond films. Diamond and Related Materials, 2009, 18(2/3): 224. [25] YANG J X, LI C M, CHEN G C, et al.Analysis of residual stress distribution in DC arc plasma jet CVD high quality diamond films by raman spectroscopy. Journal of Synthetic Crystals, 2004(4): 674. [26] DAI X N, BAI L, SUN W Y, et al.Study on the preparation technology of diamond film by MPCVD. Superhard Material Engineering, 2022, 34(2): 36. [27] WOEHRL N, BUCK V.Influence of hydrogen on the residual stress in nanocrystalline diamond films. Diamond and Related Materials, 2007, 16(4-7): 748. [28] YAMADA H.Numerical simulations to study growth of single-crystal diamond by using microwave plasma chemical vapor deposition with reactive (H, C, N) species. Japanese Journal of Applied Physics, 2012, 51(9): 105. [29] LIANG T.Study on High Quality Diamond Prepared by High Pressure MPCVD. Wuhan: Wuhan Institute of Technology, Master's Thesis, 2018. [30] SALGUEIREDO E, AMARAL M, NETO M A, et al.HFCVD diamond deposition parameters optimized by a Taguchi Matrix. Vacuum, 2011, 85(6): 701. [31] ZHU H X, MAO W M, FENG H P.Influence of texture on residual strain in CVD free standing diamond films. Chinese Journal of Materials Research, 2007(1): 32. [32] ZHOU Z Y, CHEN G C, ZHOU Y L, et al.Controlling deposition and roughness of free-standing diamond film deposited by DC plasma jet CVD. Journal of Synthetic Crystals, 2005(1): 21. [33] LI R B.Study of the stress in doped CVD diamond films. Acta Physica Sinica, 2007(6): 3428. [34] MAO W M, ZHU H X, CHEN L, et al.Relationship between texture and residual macro-strain in CVD diamond films based on phenomenological analysis. Journal of University of Science and Technology Beijing, 2008, 15(2): 197. [35] IKEDA R, UCHIYAMA T, CHO H, et al.An advanced method for measuring the residual stress of deposited film utilizing laser spallation technique. Science and Technology of Advanced Materials, 2006, 7(1): 90. [36] TSUJI T, SHINEI C, IWASAKI T, et al.Evaluation of stress in (111) homoepitaxial CVD diamond films by Raman spectrum and nitrogen-vacancy centers. Applied Physics Express, 2024, 17(11): 115502. [37] HE J S, ZHANG M, XIAO Q L.Calculation of the lattice mismatch between semiconductor epitaxy and substrate. Journal of Nanchang University Natural Science, 2006, 30(1): 63. [38] NIU D C, LI C M, LIU Z, et al.Growth stability and quality of plasma jet CVD diamond films under gas recycling condition. Journal of University Science and Technology Beijing, 2007, 29(11): 1133. [39] TACHIBANA T, YOKOTA Y, HAYASHI K, et al.Parametric study of bias-enhanced nucleation of diamond on platinum in microwave plasma. Diamond and Related Materials, 2000, 9(3-6): 251. [40] NIU C M, TSAGAROPOULOS G, BAGLIO J, et al.Nucleation and growth of diamond on Si, Cu, and Au substrates. Journal of Solid State Chemistry, 1991, 91(1): 47. [41] CHIU K A, WU P H, WANG W L, et al.Homoepitaxial overgrowth of (111) diamond films on Au-coated and Ni-coated substrates. Surface and Coatings Technology, 2022, 437: 128348. [42] KHAN M A, HAQUE M S, NASEEM H A, et al.Microwave plasma chemical vapor deposition of diamond films with low residual stress on large area porous silicon substrates. Thin Solid Films, 1998, 332(1/2): 93. [43] ZHANG Y Y, ZHANG D L, ZHANG L B, et al.The effect of surface roughness of seed on the high-rate homoepitaxial growth of CVD single-crystal diamonds. Applied Physics a-Materials Science & Processing, 2023, 129(6): 415. [44] SILVA F, ACHARD J, BRINZA O, et al.High quality, large surface area, homoepitaxial MPACVD diamond growth. Diamond and Related Materials, 2009, 18(5-8): 683. [45] MARTINEAU P M, LAWSON S C, TAYLOR A J, et al.Identification of synthetic diamond grown using chemical vapor deposition (CVD). Gems & Gemology, 2004, 40(1): 2. [46] GAUKROGER M P, MARTINEAU P M, CROWDER M J, et al.X-ray topography studies of dislocations in single crystal CVD diamond. Diamond and Related Materials, 2008, 17(3): 262. [47] XIA Y B, WANG L J.Diamond Film/Alumina Composites Used as the Packaging Material in Integrated Circuits with Ultra-High Speed and High Power. 6th IEEE CPMT Conference on High Density Microsystem Design and Packaging and Component Failure Analysis (HDP 04), Shanghai, PEOPLES R CHINA, 2004: 367-372. [48] ITO S, NAGAI M, MATSUMOTO T, et al.Self-separation of freestanding diamond films using graphite interlayers precipitated from C-dissolved Ni substrates. Journal of Crystal Growth, 2017, 470: 104. [49] MATTHIEU J.VERSTRAETE J-C C. Why is iridium the best substrate for single crystal diamond growth? Applied Physics Letters, 2005, 86(191): 191917. [50] REDDY P R S, JANARDHANAM V, REDDY V R, et al. Effects of rapid thermal annealing on the structural, optical, and electrical properties of Au/CuPc/n-Si (MPS)-type schottky barrier diodes. Applied Physics a-Materials Science & Processing, 2021, 127(10): 803. [51] PAVANI M, KUMAR A A, REDDY V R, et al.Optical, morphological and electrical properties of rapid thermally annealed CoPc/n-Ge heterostructures for photodiode applications. Materials Science and Engineering B-Advanced Functional Solid-State Materials, 2024, 300: 117102. [52] FENG C Q, WU L, CHEN P, et al.Repairing slight damages on monocrystalline silicon surface by thermal annealing. Materials Research Express, 2021, 8(4): 045005. [53] WU J M, HE Z, GUO Z Y, et al.Pulsed laser annealing of phosphorous-implanted 4H-SiC: electrical and structural characteristics. Journal of Electronic Materials, 2022, 51(1): 172. [54] YANG T, XIA Z L, FAN D Y, et al.Activation enhancement and grain size improvement for poly-Si channel vertical transistor by laser thermal annealing in 3D NAND Flash. Micromachines, 2023, 14(1): 230. [55] JACOBS A G, FEIGELSON B N, SPENCER J A, et al.Efficient activation and high mobility of ion-implanted silicon for next-generation GaN devices. Crystals, 2023, 13(5): 736. [56] NIJHAWAN S, RANKIN J, WALDEN B L, et al.Grain Impingement and Intrinsic Stresses in CVD Diamond. Symposium on Thin-Films-Stresses and Mechanical Properties VII at the MRS Fall Meeting, Boston, Ma, 1997: 415-420 [57] YAN X B.Graphitization Behavior of CVD Free-standing Diamond Films at High Temperature. Beijing: University of Science &Technology Beijing, Doctoral dissertation, 2019. [58] XU F, ZUO D W, LU W Z, et al.Study of the Thermal and Intrinsic Stress of Large Area Diamond Film Prepared by HFCVD. 9th Conference on Machining and Advanced Manufacturing Technology in China, Harbin, 2007: 123-127 [59] YANG C, LIU D, ZHU F,et al. Method for Reducing Crack of Diamond Film, Involves Controlling Substrate Column to be Separated from Cooling Table Placed under Substrate Column until Cooling is Completed, in Cooling Process after Growth is Completed, when Temperature of Substrate Column is Lowered to Set Temperature: CN113684466-A; CN113684466-B.2021-11-23;2022-1-25. [60] CHANG Y Y, YANG Y J, WENG S Y.Effect of interlayer design on the mechanical properties of AlTiCrN and multilayered AlTiCrN/TiSiN hard coatings. Surface & Coatings Technology, 2020, 389: 125637. [61] LIU L L, RUAN Q D, WU Z Z, et al.Fabrication and cutting performance of CrAlN/CrAl multilayer coatings deposited by continuous high-power magnetron sputtering. Ceramics International, 2022, 48(10): 14528. [62] GAYDAYCHUK A, ZENKIN S, LINNIK S.Influence of Al-Si-N interlayer on residual stress of CVD diamond coatings. Surface & Coatings Technology, 2019, 357: 348. [63] DU Y, YAN B, LI H, et al. Method for Preparing Low Stress Diamond Film by Using Ultrasonic Cavitation Technology to Synthesize Metal Gallium Buffer Layer in Medical Fields, Involves Adding Liquid Gallium into Ethanol, Performing Ultrasonic Treatment,Taking Supernatant to Obtain Metal Gallium Nano-particle Suspension: CN117026201-A.2023-11-10. [64] GUO J C, LIU J L, HUA C Y, et al.Interfacial stress evolution simulation on the graphite substrate/interlayer/diamond film during the cooling process. Diamond and Related Materials, 2017, 75: 12. [65] RILEY P R, JOSHI P, NARAYAN J, et al.Enhanced nucleation and large-scale growth of CVD diamond via surface-modification of silicon-incorporated diamond-like carbon thin films. Diamond and Related Materials, 2021, 120: 11. [66] WANG B, ZHAO J W, HU Y W, et al.Anomalous thermal response of bulk diamond to uniaxial (100) strain: a first-principles prediction. Physical Review B, 2022, 106(18): 10. [67] BROIDO D A, LINDSAY L, WARD A.Thermal conductivity of diamond under extreme pressure: a first-principles study. Physical Review B, 2012, 86(11): 7. [68] LIU C, SONG X Q, LI Q, et al.Superconductivity in compression-shear deformed diamond. Physical Review Letters, 2020, 124(14): 147001. [69] DANG C Q, CHOU J P, DAI B, et al.Achieving large uniform tensile elasticity in microfabricated diamond. Science, 2021, 371(6524): 76. [70] NIE A M, BU Y Q, LI P H, et al.Approaching diamond's theoretical elasticity and strength limits. Nature Communications, 2019, 10: 7. [71] LIU Z, LI C M, NIU D C, et al. Finite-element analysis of thermal stresses in diamond film deposition on Mo substrate with Ti interlayer. Materials Science Forum, 2008, 575-578: 996. [72] SHAO S, LIU P, YE S, et al.Structural evolution and self-destructive behavior of Mo/Ti transition layers during free-standing diamond-film preparation. Ceramics International, 2024, 50(13): 23677. [73] YULIANTO N, KADJA G T M, BORNEMANN S, et al. Ultrashort pulse laser lift-off processing of InGaN/GaN light-emitting diode chips. ACS Applied Electronic Materials, 2021, 3(2): 778. [74] ZHANG J, ZHANG W.Micro-LED laser lift-off research of GaN on AlN of sapphire substrate. Laser Technology, 2023, 47(1): 25. [75] QIN F F, ZHU Q X, ZHANG Y F, et al.Effect of substrates on lasing properties of GaN transferable membranes. Optical Materials, 2021, 122: 111663. [76] PIñERO J C, FERNáNDEZ D, LLORET F, et al. Inducing controlled blistering by Smart-Cut™ process in semiconducting diamond: a STEM study. Applied Surface Science, 2025, 681: 161570. [77] MASANTE C, DE VECCHY J, MAZEN F, et al.Hydrogen implantation-induced blistering in diamond: Toward diamond layer transfer by the Smart Cut™ technique. Diamond and Related Materials, 2022, 126: 109085. [78] JING J X, SUN F Q, WANG Z Q, et al.Scalable production of ultraflat and ultraflexible diamond membrane. Nature, 2024, 636(8043): 627. [79] LI Y, XU J Q, SU J H, et al.Residual stress and deformation of 1 064 nm high reflection films for laser systems. Surface Technology, 2022, 51(9): 311. [80] PENG X L, TSUI Y C, CLYNE T W.Stiffness, residual stresses and interfacial fracture energy of diamond films on titanium. Diamond and Related Materials, 1997, 6(11): 1612. [81] CHEN S L, SHEN B, ZHANG J G, et al.Evaluation on residual stresses of silicon-doped CVD diamond films using X-ray diffraction and Raman spectroscopy. Transactions of Nonferrous Metals Society of China, 2012, 22(12): 3021. [82] AHMED F, BAYERLEIN K, ROSIWAL S M, et al.Stress evolution and cracking of crystalline diamond thin films on ductile titanium substrate: analysis by micro-Raman spectroscopy and analytical modelling. Acta Materialia, 2011, 59(14): 5422. [83] SHU G Y, DAI B, RALCHENKQ V G, et al.Epitaxial growth of mosaic diamond: Mapping of stress and defects in crystal junction with a confocal Raman spectroscopy. Journal of Crystal Growth, 2017, 463: 19. [84] BOPPART, VAN STRAATEN J, SILVERA. Raman spectra of diamond at high pressures. Physical review B, Condensed matter, 1985, 32(2): 1423. [85] TARDIEU A, CANSELL F, PETITET J P.Pressure and temperature dependence of the first-order Raman mode of diamond. Journal of Applied Physics, 1990, 68(7): 3243. [86] DURAND O, BISARO R, BRIERLEY C J, et al.Residual stresses in chemical vapor deposition free-standing diamond films by X-ray diffraction analyses. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2000, 288(2): 217. [87] Shanghai Research Institute of Materials. Non-destructive Testing—Practice for Residual Stress Measurement by X-ray: GB/T 7704-2017. Beijing: Standards Press of China, 2017. [88] AIDA H, IHARA T, OSHIMA R, et al.Analysis of external surface and internal lattice curvatures of freestanding heteroepitaxial diamond grown on an Ir (001)/MgO (001) substrate. Diamond and Related Materials, 2023, 136: 9. [89] LI Z, CUI C, ARTEAGA O, et al.Full-field measurement of residual stress in single-crystal diamond substrates based on Mueller matrix microscopy. measurement, 2024, 234: 114790. [90] HUA C Y, YAN X B, WEI J J, et al.Intrinsic stress evolution during different growth stages of diamond film. Diamond and Related Materials, 2017, 73: 62. [91] SRIKANTH V, STAEDLER T, JIANG X.Deposition of stress-free diamond films on Si by diamond/β-SiC nanocomposite intermediate layers. Diamond and Related Materials, 2009, 18(10): 1326. [92] North University of China. Micro-electromechanical System Technology—Measuring Method of Microstructure Surface Stress Based on Raman Spectroscopy: GB/T 34899-2017. Beijing: Standards Press of China, 2017. [93] CHAN S Y, TU J P, HUANG K, et al.Oriented growth of 5-inch optical polycrystalline diamond films by suppressing dark features. Ceramics International, 2024, 50(19): 37111. [94] LIN H, LI J, YANG Z L, et al.Recent progress in stress analysis technology and application of neutron diffraction. Acta Metallurgica Sinica, 2024, 60(8): 1017. |
[1] | 田睿智, 兰正义, 殷杰, 郝南京, 陈航榕, 马明. 基于微流控技术的纳米无机生物材料制备: 原理及其研究进展[J]. 无机材料学报, 2025, 40(4): 337-347. |
[2] | 张继国, 吴田, 赵旭, 杨钒, 夏天, 孙士恩. 钠离子电池正极材料循环稳定性提升策略及产业化进程[J]. 无机材料学报, 2025, 40(4): 348-362. |
[3] | 殷杰, 耿佳毅, 王康龙, 陈忠明, 刘学建, 黄政仁. SiC陶瓷的3D打印成形与致密化新进展[J]. 无机材料学报, 2025, 40(3): 245-255. |
[4] | 谌广昌, 段小明, 朱金荣, 龚情, 蔡德龙, 李宇航, 杨东雷, 陈彪, 李新民, 邓旭东, 余瑾, 刘博雅, 何培刚, 贾德昌, 周玉. 直升机特定结构先进陶瓷材料研究进展与应用展望[J]. 无机材料学报, 2025, 40(3): 225-244. |
[5] | 范晓波, 祖梅, 杨向飞, 宋策, 陈晨, 王子, 罗文华, 程海峰. 质子调控型电化学离子突触研究进展[J]. 无机材料学报, 2025, 40(3): 256-270. |
[6] | 海热古·吐逊, 郭乐, 丁嘉仪, 周嘉琪, 张学良, 努尔尼沙·阿力甫. 上转换荧光探针辅助的光学成像技术在肿瘤显影中的应用研究进展[J]. 无机材料学报, 2025, 40(2): 145-158. |
[7] | 孙树娟, 郑南南, 潘昊坤, 马猛, 陈俊, 黄秀兵. 单原子催化剂制备方法的研究进展[J]. 无机材料学报, 2025, 40(2): 113-127. |
[8] | 陶桂龙, 支国伟, 罗添友, 欧阳佩东, 衣新燕, 李国强. 空腔型薄膜体声波滤波器的关键技术进展[J]. 无机材料学报, 2025, 40(2): 128-144. |
[9] | 周帆, 田志林, 李斌. 热防护系统用碳化物超高温陶瓷抗烧蚀涂层研究进展[J]. 无机材料学报, 2025, 40(1): 1-16. |
[10] | 魏相霞, 张晓飞, 徐凯龙, 陈张伟. 增材制造柔性压电材料的现状与展望[J]. 无机材料学报, 2024, 39(9): 965-978. |
[11] | 杨鑫, 韩春秋, 曹玥晗, 贺桢, 周莹. 金属氧化物电催化硝酸盐还原合成氨研究进展[J]. 无机材料学报, 2024, 39(9): 979-991. |
[12] | 刘鹏东, 王桢, 刘永锋, 温广武. 硅泥在锂离子电池中的应用研究进展[J]. 无机材料学报, 2024, 39(9): 992-1004. |
[13] | 黄洁, 汪刘应, 王滨, 刘顾, 王伟超, 葛超群. 基于微纳结构设计的电磁性能调控研究进展[J]. 无机材料学报, 2024, 39(8): 853-870. |
[14] | 陈乾, 苏海军, 姜浩, 申仲琳, 余明辉, 张卓. 超高温氧化物陶瓷激光增材制造及组织性能调控研究进展[J]. 无机材料学报, 2024, 39(7): 741-753. |
[15] | 王伟明, 王为得, 粟毅, 马青松, 姚冬旭, 曾宇平. 以非氧化物为烧结助剂制备高导热氮化硅陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 634-646. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||