无机材料学报

• •    

高承载下Al2O3-GdAlO3(GAP)非晶陶瓷涂层摩擦磨损性能

艾伊昭彤1, 任九龙2, 强林芽3, 张小珍3, 杨凯2, 高彦峰2   

  1. 1.中国科学院 上海硅酸盐研究所, 上海 201899;
    2.上海大学 材料科学与工程学院, 上海 200444;
    3.景德镇陶瓷大学 材料科学与工程学院, 景德镇 333403
  • 收稿日期:2025-01-13 修回日期:2025-02-17
  • 作者简介:艾伊昭彤(1993-), 女, 工程师. E-mail: aiyizhaotong@mail.sic.ac.cn

Friction and Wear Properties of Al2O3-GdAlO3 (GAP) Amorphous Ceramic Coatings under High Load Capacity

AI Yizhaotong1, REN Jiulong2, QIANG Linya3, ZHANG Xiaozhen3, YANG Kai2, GAO Yanfeng2   

  1. 1. The Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China;
    2. School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China;
    3. School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China
  • Received:2025-01-13 Revised:2025-02-17
  • About author:AI Yizhaotong (1993-), female, engineer. E-mail: aiyizhaotong@mail.sic.ac.cn

摘要: 面向高承载、高温、富氧及宽温域交变热冲击等苛刻工况下的航空航天动力装置关键部件,对材料的力学性能、热稳定性及抗氧化能力提出了极高要求。传统热喷涂技术制备的Al2O3涂层凭借高硬度、良好的耐磨性、优异的抗氧化能力及较好的热稳定性,已在航空航天、能源及机械等领域得到了广泛应用。然而,热喷涂Al2O3涂层中以亚稳态γ-Al2O3为主晶相,在力学及导热性能方面弱于α-Al2O3相,限制了其在更高承载极端工况下的应用效果。为解决上述问题并提升涂层的综合性能,本研究采用大气等离子体喷涂(Atmospheric Plasma Spraying, APS)技术,制备了厚度约350 µm的Al2O3-GdAlO3(GAP)非晶涂层。通过设计磨损试验(载荷2000 N、转速500 r/min、时间1 h),对涂层的摩擦磨损行为及力学性能进行了系统考察。实验结果表明,由于涂层中高比例的非晶相及优化的微观结构,Al2O3-GAP涂层在高速重载摩擦测试中表现出优异的耐磨性和抗裂纹扩展能力,显著优于传统多晶Al2O3涂层。此外,Al2O3-GAP涂层的摩擦系数较低且稳定,摩擦表面温度明显降低,减缓了高温氧化及热损伤的发生,缓解了应力集中效应。综上所述,Al2O3-GAP非晶涂层在高载荷、高速摩擦工况下具有显著优势,为航空航天动力装置关键部件的防护提供了一种高性能、可靠服役的涂层解决方案。

关键词: 大气等离子体喷涂, Al2O3-GdAlO3(GAP), 非晶陶瓷涂层, 高承载耐磨性能

Abstract: Key components of aerospace power systems operating under extreme conditions, such as high loads, elevated temperatures, oxygen-rich environments, and wide-temperature-range alternating thermal shocks, impose stringent requirements on material mechanical properties, thermal stability, and oxidation resistance. Conventional thermally sprayed Al2O3 coatings, characterized by high hardness, excellent wear resistance, superior oxidation resistance, and good thermal stability, have been widely applied in aerospace, energy, and mechanical engineering fields. However, these coatings primarily consist of metastable γ-Al2O3 as the dominant crystalline phase, which exhibits inferior mechanical and thermal conductivity properties compared to α-Al2O3. This limitation hinders their effectiveness under extreme high-load conditions. To address this issue and enhance the overall coating performance, this study employs Atmospheric Plasma Spraying (APS) to fabricate an Al2O3-GdAlO3 (GAP) amorphous coating with a thickness of approximately 350 µm. The friction and wear behavior, along with the mechanical properties of the coating, were systematically investigated through a designed wear test under a load of 2000 N, a rotational speed of 500 r/min, and a duration of 1 h. Experimental results indicate that due to the high proportion of the amorphous phase and the optimized microstructure, the Al2O3-GAP coating exhibits excellent wear resistance and superior crack propagation resistance under high-speed and heavy-load friction conditions, significantly outperforming conventional polycrystalline Al2O3 coatings. Furthermore, the Al2O3-GAP coating demonstrates a lower and more stable friction coefficient, effectively reducing frictional surface temperature. This mitigates high-temperature oxidation and thermal damage while alleviating stress concentration effects. In summary, the Al2O3-GAP amorphous coating demonstrates remarkable advantages under high-load, high-speed friction conditions, providing a high-performance and reliable coating solution for the protection of critical aerospace power system components.

Key words: atmospheric plasma spraying, Al2O3-GdAlO3(GAP), amorphous ceramic coating, high-load wear resistance

中图分类号: