无机材料学报 ›› 2026, Vol. 41 ›› Issue (2): 253-261.DOI: 10.15541/jim20250076 CSTR: 32189.14.jim20250076

• 研究快报 • 上一篇    下一篇

基于金属-半导体-金属鳍式隧穿二极管的高频整流桥电路

邓恒杨1(), 秦翠洁1, 郝胜兰1, 冯光迪1,2, 朱秋香1(), 田博博1,2(), 褚君浩1, 段纯刚1,3   

  1. 1.华东师范大学 电子科学系, 极化材料与器件教育部重点实验室, 上海类脑智能材料与器件研发中心, 上海 200241
    2.华东师范大学重庆研究院 精密光学重庆市重点实验室, 重庆 401120
    3.山西大学 山西省极端光学协同创新中心, 太原 030006

A Rectifier Bridge Circuit Based on Metal-semiconductor-metal Fin Tunneling Diode for High-frequency Application

DENG Hengyang1(), QIN Cuijie1, HAO Shenglan1, FENG Guangdi1,2, ZHU Qiuxiang1(), TIAN Bobo1,2(), CHU Junhao1, DUAN Chungang1,3   

  1. 1. Shanghai Center of Brain-inspired Intelligent Materials and Devices, Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai 200241, China
    2. Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China
    3. Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • Received:2025-02-22 Revised:2025-03-14 Published:2025-05-09 Online:2025-05-09
  • Contact: ZHU Qiuxiang, associate professor. E-mail: qxzhu@clpm.ecnu.edu.cn;
    TIAN Bobo, professor. E-mail: bbtian@ee.ecnu.edu.cn
  • About author:DENG Hengyang (1999-), male, Master candidate. E-mail: 51254700083@stu.ecnu.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2024YFA1410700);National Key Research and Development Program of China(2021YFA1200700);National Natural Science Foundation of China(62474065);National Natural Science Foundation of China(T2222025);National Natural Science Foundation of China(62174053);Natural Science Foundation of Chongqing(CSTB2024NSCQ-JQX0005);Shanghai Science and Technology Innovation Action Plan(24QA2702300);Shanghai Science and Technology Innovation Action Plan(24YF2710400);National Postdoctoral Program(GZB20240225);Fundamental Research Funds for the Central Universities

摘要:

隧穿二极管在太赫兹(THz)和可见光频谱的未来整流领域中具有显著的应用前景, 这得益于其拥有飞秒级的隧穿渡越时间。本研究制备了隧穿距离分别为10和5 nm的TiN/ZnO/Pt鳍式隧道二极管(Fin tunneling diodes, FTDs), 它们展现出优异的特性, 其中包括超高的不对称性(10 nm器件为1.6×104, 5 nm器件为1.6×103)、零偏压下的高响应度(10 nm器件为25.3 V-1, 5 nm器件为28.3 V-1), 均超越了传统肖特基二极管的热电压限制, 并且两个器件的开启电压(Von)都极低, 约为100 mV, 这使得它们成为能量转换应用的理想选择。基于技术计算机辅助设计(Technology computer-aided design, TCAD)模拟, 所观测到的电子传输不对称性可归因于在不同偏置条件下福勒-诺德海姆隧穿(Fowler-Nordheim tunneling, FNT)和陷阱辅助隧穿(Trap-assisted tunneling, TAT)之间的转变, 这在相应的能带排列图中得以阐明。此外, 通过对FTDs进行集成, 设计了一种具有全波整流特性的整流桥电路, 其在太赫兹波段(0.1 THz)的整流性能通过SPICE电路仿真得到了验证。本研究为太赫兹能量转换和探测应用提供了一种高效的解决方案。

关键词: 鳍式隧穿二极管, TCAD仿真, 整流桥, SPICE仿真

Abstract:

Tunneling diodes hold significant promise for future rectification in the terahertz (THz) and visible light spectra, thanks to their femtosecond-scale transit-time tunneling capabilities. In this work, TiN/ZnO/Pt fin tunneling diodes (FTDs) with tunneling distances of 10 and 5 nm are fabricated, which demonstrate remarkable characteristics, including ultrahigh asymmetry (1.6×104 for 10 nm device and 1.6×103 for 5 nm device), high responsivity (25.3 V-1 for 10 nm device and 28.3 V-1 for 5 nm device) at zero bias, surpassing the thermal voltage limit of conventional Schottky diodes, and low turn-on voltage (Von) of approximately 100 mV for both devices, making them ideal for power conversion applications. Using technology computer-aided design (TCAD) simulations, the observed asymmetry in electronic transport is attributed to the transition between Fowler-Nordheim tunneling (FNT) and trap-assisted tunneling (TAT) under different biasing conditions, as illustrated by the corresponding energy band profiles. Furthermore, by integrating the FTDs, a rectifier bridge circuit is designed and exhibits full-wave rectification behavior, validated through SPICE simulations for THz-band operations. This advancement offers a highly efficient solution for THz-band energy conversion and effective detection applications.

Key words: fin tunneling diode, TCAD simulation, rectifier bridge, SPICE simulation

中图分类号: