• 研究论文 • 上一篇
曹路涵1,2, 孟佳1, 薛玉冬3,4, 盛晓晨1, 崔苑苑5, 乐军1, 宋力昕1,2
收稿日期:
2024-12-26
修回日期:
2025-03-15
作者简介:
曹路涵(2000-), 女, 硕士研究生. E-mail: caoluhan22@mails.ucas.ac.cn
CAO Luhan1,2, MENG Jia1, XUE Yudong3,4, SHENG Xiaochen1, CUI Yuanyuan5, LE Jun1, SONG Lixin1,2
Received:
2024-12-26
Revised:
2025-03-15
About author:
CAO Luhan (2000-), female, Master candidate. E-mail: caoluhan22@mails.ucas.ac.cn
摘要: SiC/SiC陶瓷基复合材料以其耐高温、低密度、高强度等优点有望被用于可重复使用空天飞行器的热防护系统。鉴于空天飞行器面临的复杂恶劣使用环境,为满足可重复使用的要求亟需在SiC/SiC陶瓷基复合材料表面制备高温抗氧化封严涂层,因SiC/SiC陶瓷基复合材料粗糙且各向异性的表面易诱导涂层开裂失效,封严涂层设计和涂层结合性能优化有待进一步研究。本工作通过化学气相沉积法在SiC/SiC陶瓷基复合材料表面设计制备了SiC过渡层,解决了MoSi2掺杂的SiO2-Al2O3-BaO-B2O3玻璃陶瓷复合涂层(MoSi2-SABB)的开裂剥落问题,使涂层展现出良好的抗热震性能。有限元分析表明SiC过渡层能够有效降低MoSi2-SABB涂层与基材界面的残余应力,缓解残余应力的各向异性,显著提升了涂层的结合性能。结合第一性原理计算探究了不同晶型极性SiC过渡层与MoSi2-SABB涂层的结合机制,结果表明SiC过渡层的晶型与极性是影响涂层结合性能的关键因素,为SiC/SiC陶瓷基复合材料表面封严涂层的设计与涂层结合性能的优化提供了重要依据。
中图分类号:
曹路涵, 孟佳, 薛玉冬, 盛晓晨, 崔苑苑, 乐军, 宋力昕. SiC过渡层对SiC/SiC陶瓷基复合材料表面MoSi2-SABB涂层结合性能的影响[J]. 无机材料学报, DOI: 10.15541/jim20240538.
CAO Luhan, MENG Jia, XUE Yudong, SHENG Xiaochen, CUI Yuanyuan, LE Jun, SONG Lixin. Effect of SiC Transition Layer on Bonding Properties of MoSi2-SABB Coating on SiC/SiC Ceramic Matrix Composites[J]. Journal of Inorganic Materials, DOI: 10.15541/jim20240538.
[1] WANG X, GAO X, ZHANG Z,et al. Advances in modifications and high-temperature applications of silicon carbide ceramic matrix composites in aerospace: a focused review. Journal of the European Ceramic Society, 2021, 41(9): 4671. [2] KöNIG T, GALETZ M, ALBERT B. Application of the pack cementation process on SiC/SiC ceramic matrix composites.Journal of the European Ceramic Society, 2021, 41(16): 101. [3] KARADIMAS G, SALONITIS K.Ceramic matrix composites for aero engine applications—a review.Applied Sciences, 2023, 13(5): 3017. [4] MAZLAN N, SAPUAN S, ILYAS R A.Advanced Composites in Aerospace Engineering Applications. New York: Springer, 2022: 367-385. [5] ZOK F W, MAXWELL P T, KAWANISHI K,et al. Degradation of a SiC-SiC composite in water vapor environments. Journal of the American Ceramic Society, 2020, 103(3): 1927. [6] HU C, TANG S, PANG S, et al. Long-term oxidation behaviors of C/SiC composites with a SiC/UHTC/SiC three-layer coating in a wide temperature range. Corrosion Science, 2019, 147: 1. [7] RUGGLES‐WRENN M B, WILLIAMS T M. Fatigue of a SiC/SiC ceramic composite with an ytterbium-disilicate environmental barrier coating at elevated temperature.International Journal of Applied Ceramic Technology, 2020, 17(5): 2074. [8] XU Y, CHENG L, ZHANG L, et al. Oxidation behavior and mechanical properties of C/SiC composites with Si-MoSi2 oxidation protection coating. Journal of Materials Science, 1999, 34: 6009. [9] CAO X, LUAN X, WANG Y,et al. Oxidation and corrosion behavior of 2D laminated SiC/SiC with Si/mullite/BSAS EBC in dry oxygen/water vapor at 1200 ℃. Corrosion Science, 2023, 219: 111237. [10] ABDUL-AZIZ A, BHATT R T.Modeling of thermal residual stress in environmental barrier coated fiber reinforced ceramic matrix composites.Journal of Composite Materials, 2012, 46(10): 1211. [11] ZHAO K, DONG S, LÜ K,et al. Feasibility research of Yb3Al5O12 garnet as environmental barrier coating materials. Ceramics International, 2023, 49(10): 15413. [12] LEE K N.Yb2Si2O7 Environmental barrier coatings with reduced bond coat oxidation rates via chemical modifications for long life.Journal of the American Ceramic Society, 2019, 102(3): 1507. [13] LEE K N, ZHU D, LIMA R S.Perspectives on environmental barrier coatings (EBCs) manufacturedvia air plasma spray (APS) on ceramic matrix composites (CMCs): a tutorial paper. Journal of Thermal Spray Technology, 2021, 30: 40. [14] TEJERO-MARTIN D, BENNETT C, HUSSAIN T.A review on environmental barrier coatings: History, current state of the art and future developments.Journal of the European Ceramic Society, 2021, 41(3): 1747. [15] WANG Z, ZENG F, LI Y, et al. Self-healing effect and oxidation resistance of ZrSiO4-glass coating for C/C composites at 1173 K-1573 K. Journal of Alloys and Compounds, 2019, 792: 496. [16] FENG T, LI H J, WANG S L, et al. Boron modified multi-layer MoSi2-CrSi2-SiC-Si oxidation protective coating for carbon/carbon composites. Ceramics International, 2014, 40(9): 15167. [17] YANG X, ZOU Y, HUANG Q,et al. Influence of preparation technology on the structure and phase composition of MoSi2-Mo5Si3/SiC multi-coating for carbon/carbon composites. Journal of Materials Science & Technology, 2010, 26(2): 106. [18] FANG G, REN J, SHI J,et al. Thermal stress analysis of environmental barrier coatings considering interfacial roughness. Coatings, 2020, 10(10): 947. [19] FANG G, ZHENG M, CHEN M,et al. Stochastic simulation of thermal residual stress in environmental barrier coated 2.5 D woven ceramic matrix composites. Journal of Materials Engineering and Performance, 2024, 33(8): 4114. [20] WANG B, LI G, LI J,et al. Interfacial modification and oxidation resistance behavior of a CVD-SiC coating for C/SiC composites. Ceramics International, 2023, 49(22): 36816. [21] KIM J G, PARK S J, PARK J Y, et al. The effect of temperature on the growth and properties of chemical vapor deposited ZrC films on SiC-coated graphite substrates. Ceramics International, 2015, 41(1): 211. [22] HU D, FU Q, LIU T,et al. Structural design and ablation performance of ZrB2/MoSi2 laminated coating for SiC coated carbon/carbon composites. Journal of the European Ceramic Society, 2020, 40(2): 212. [23] HU D, FU Q, LIU B,et al. Multi-layered structural designs of MoSi2/mullite anti-oxidation coating for SiC-coated C/C composites. Surface and Coatings Technology, 2021, 409: 126901. [24] LOMBARD C, VAN SITTERT C, MUGO J,et al. Computational investigation of α-SiO2 surfaces as a support for Pd. Physical Chemistry Chemical Physics, 2023, 25(8): 6121. [25] JIANG D, CARTER E A.Prediction of strong adhesion at the MoSi2/Fe interface.Acta materialia, 2005, 53(17): 4489. [26] GUO D, XU B, JIA X,et al. Bonding strength and thermal conductivity of novel nanostructured Lu2Si2O7/Lu2SiO5 environmental barrier coating. Surface and Coatings Technology, 2024, 480: 130600. [27] YANG H, YANG Y, CAO X,et al. Thermal shock resistance and bonding strength of tri-layer Yb2SiO5/mullite/Si coating on SiCf/SiC composites. Ceramics International, 2020, 46(17): 27292. [28] HUANG J, LIU R, HU Q,et al. High temperature abradable sealing coating for SiCf/SiC ceramic matrix composites. Ceramics International, 2023, 49(2): 1779. [29] KIM J G, YOO W S, PARK J Y,et al. Quantitative analysis of contact angle of water on SiC: polytype and polarity dependence. ECS Journal of Solid State Science and Technology, 2020, 9(12): 123006. [30] OWENS D K, WENDT R.Estimation of the surface free energy of polymers.Journal of Applied Polymer Science, 1969, 13(8): 1741. |
[1] | 穆爽, 马沁, 张禹, 沈旭, 杨金山, 董绍明. Yb2Si2O7改性SiC/SiC复合材料的氧化行为研究[J]. 无机材料学报, 2025, 40(3): 323-328. |
[2] | 范晓波, 祖梅, 杨向飞, 宋策, 陈晨, 王子, 罗文华, 程海峰. 质子调控型电化学离子突触研究进展[J]. 无机材料学报, 2025, 40(3): 256-270. |
[3] | 殷杰, 耿佳毅, 王康龙, 陈忠明, 刘学建, 黄政仁. SiC陶瓷的3D打印成形与致密化新进展[J]. 无机材料学报, 2025, 40(3): 245-255. |
[4] | 穆浩洁, 张源江, 喻彬, 付秀梅, 周世斌, 李晓东. ZrO2掺杂Y2O3-MgO纳米复相陶瓷的制备及性能研究[J]. 无机材料学报, 2025, 40(3): 281-289. |
[5] | 樊文楷, 杨潇, 李宏华, 李永, 李江涛. 无压烧结制备(Y0.2Gd0.2Er0.2Yb0.2Lu0.2)2Zr2O7高熵陶瓷及其高温抗CMAS腐蚀性能[J]. 无机材料学报, 2025, 40(2): 159-167. |
[6] | 叶君豪, 周真真, 胡辰, 王雁斌, 荆延秋, 李廷松, 程梓秋, 吴俊林, IVANOV Maxim, HRENIAK Dariusz, 李江. 共沉淀纳米粉体制备Yb:Sc2O3透明陶瓷的微结构与光学性能[J]. 无机材料学报, 2025, 40(2): 215-224. |
[7] | 孙树娟, 郑南南, 潘昊坤, 马猛, 陈俊, 黄秀兵. 单原子催化剂制备方法的研究进展[J]. 无机材料学报, 2025, 40(2): 113-127. |
[8] | 周帆, 田志林, 李斌. 热防护系统用碳化物超高温陶瓷抗烧蚀涂层研究进展[J]. 无机材料学报, 2025, 40(1): 1-16. |
[9] | 张婧慧, 陆晓彤, 毛海雁, 田亚州, 张山林. 烧结助剂对BaZr0.1Ce0.7Y0.2O3-δ电解质烧结行为及电导率的影响[J]. 无机材料学报, 2025, 40(1): 84-90. |
[10] | 鲍伟超, 郭晓杰, 辛晓婷, 彭湃, 王新刚, 刘吉轩, 张国军, 许钫钫. 在碳化物陶瓷中构筑金属原子层分相共生结构[J]. 无机材料学报, 2025, 40(1): 17-22. |
[11] | 王月月, 黄佳慧, 孔红星, 李怀珠, 姚晓红. 载银放射状介孔二氧化硅的制备及其在牙科树脂中的应用[J]. 无机材料学报, 2025, 40(1): 77-83. |
[12] | 王智祥, 陈莹, 逄清阳, 李鑫, 王根水. 碳酸锰掺杂氧化镁基陶瓷的烧结行为和介电性能[J]. 无机材料学报, 2025, 40(1): 97-103. |
[13] | 吕昕怿, 相恒阳, 曾海波. 长程有序助力钙钛矿QLED高性能化[J]. 无机材料学报, 2025, 40(1): 111-112. |
[14] | 孙雨萱, 王政, 时雪, 史颖, 杜文通, 满振勇, 郑嘹赢, 李国荣. Fe掺杂PZT陶瓷缺陷偶极子热稳定性对机电性能影响[J]. 无机材料学报, 0, (): 240244-240244. |
[15] | 谢天, 宋二红. 弹性应变对C、H、O在过渡金属氧化物表面吸附的影响[J]. 无机材料学报, 2024, 39(11): 1292-1300. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||