无机材料学报

• 研究论文 •    

稳定立方相p型 GeMnTe2 基热电材料制备

张海丰1, 蒋蒙1, 孙婷婷3, 王连军1, 江莞1,2   

  1. 东华大学 1.材料科学与工程学院,先进纤维材料全国重点实验室;
    2.功能材料研究中心;
    3.生物与医学工程学院,上海 201620
  • 收稿日期:2025-01-25 修回日期:2025-03-31
  • 作者简介:张海丰(2000-), 男, 硕士研究生. E-mail: zhanghf2025@163.com
  • 基金资助:
    国家自然科学基金(U23A20685, 52174343)

Preparation of p-type GeMnTe2 based Thermoelectric Materials with Stable Cubic Phase

ZHANG Haifeng1, JIANG Meng1, SUN Tingting3, WANG Lianjun1, JIANG Wan1,2   

  1. 1. State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China;
    2. Institute of Functional Materials, Donghua University, Shanghai 201620, China;
    3. College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
  • Received:2025-01-25 Revised:2025-03-31
  • About author:ZHANG Haifeng (2000-), male, Master candidate. E-mail: zhanghf2025@163.com
  • Supported by:
    National Natural Science Foundation of China (U23A20685, 52174343)

摘要: p型GeTe基热电材料在中低温区(300~800 K)具有良好的热电性能,受到了研究者的广泛关注。然而,在600~700 K温度区间,该化合物易从菱方相转变到立方相,导致热膨胀系数变化,限制了其在热电器件领域的应用。因此,获得稳定无相变的GeTe基热电材料至关重要。本研究利用高温熔融结合放电等离子体烧结制备了GeMnTe2材料。合成的样品存在MnTe2第二相,导致其总热导率从800 K下的1.34 W·m-1·K-1增大到1.81 W·m-1·K-1。本研究通过优化不同元素化学计量比,抑制了MnTe2第二相的生成,制备获得了稳定立方相GeMnTe1.96材料。制备的GeMnTe1.96化合物样品最高zT值达到0.85(800 K),这为中温区废热高效稳定回收利用提供了有发展潜力的热电材料。

关键词: 高温熔融, 立方相, GeMnTe2基化合物, 热导率

Abstract: p-type GeTe based thermoelectric (TE) materials have attracted significant attention owing to their remarkable TE performance in the medium and low temperature range (300~800 K). However, the material undergoes a phase transition from rhombohedral to cubic in 600~700 K, inducing changes in the coefficient of thermal expansion that limit its application in TE devices. Consequently, it is imperative to develop stable GeTe based thermoelectric material free from phase transitions. In this study, high temperature melting combined with spark plasma sintering was employed to synthesize GeMnTe2. The as-synthesized samples contain the secondary phase of MnTe2, which increases the total thermal conductivity from 1.34 W·m⁻¹·K⁻¹ to 1.81 W·m⁻¹·K⁻¹ at 800 K. By optimizing the chemical stoichiometry of different elements, the formation of MnTe2 secondary phase was suppressed, resulting in the stable pure cubic phase GeMnTe1.96. GeMnTe1.96 achieved the maximum zT of 0.85 at 800 K. This thermoelectric material exhibited significant potential for efficient and stable waste heat utilization in the medium temperature range.

Key words: high temperature melting, cubic phase, GeMnTe2 based compound, thermal conductivity

中图分类号: