[1] YANG D, XING Y, WANG J, et al. Multifactor roadmap for designing low‐power‐consumed micro thermoelectric thermostats in a closed‐loop integrated 5G optical module. Interdisciplinary Materials, 2024, 3(2): 326.
[2] 范人杰, 江先燕, 陶奇睿, et al. In1+xTe化合物的结构及热电性能研究. 物理学报, 2021, 70(13): 393.
[3] LIU Z, HONG T, XU L, et al. Lattice expansion enables interstitial doping to achieve a high average ZT in n‐type PbS. Interdisciplinary Materials, 2023, 2(1): 161.
[4] QIU J, YAN Y, XIE H, et al. Achieving superior performance in thermoelectric Bi0.4Sb1.6Te3.72 by enhancing texture and inducing high-density line defects. Sci. China Mater, 2021, 64: 1507.
[5] 唐新峰, 柳伟, 谭刚健, 等. 热电材料物理化学. 北京:科学出版社, 2024: 1-30.
[6] 陈立东, 刘睿恒, 史迅. 热电材料与器件. 北京:科学出版社, 2018: 1-18.
[7] 张建中. 温差电技术. 电源技术, 2016(3): 754.
[8] LIN L, ZHANG Y F, LIU H B, et al. A new configuration design of thermoelectric cooler driven by thermoelectric generator. Applied Thermal Engineering, 2019, 160: 114087.
[9] LIU W D, WANG D Z, LIU Q, et al. High‐performance GeTe‐based thermoelectrics: from materials to devices. Advanced Energy Materials, 2020, 10(19): 2000367.
[10] TAN G, ZHAO L D, KANATZIDIS M G.Rationally designing high-performance bulk thermoelectric materials.Chemical Reviews, 2016, 116(19): 12123.
[11] HE J, TRITT T M. Advances in thermoelectric materials research: looking back and moving forward. Science, 2017, 357(6358): eaak9997.
[12] ROWE D M.Thermoelectrics handbook: macro to nano. Boston: CRC press, 2018: 1008.
[13] 訾鹏, 白辉, 汪聪, 等 AgyIn3.33-y/3Se5化合物结构和热电性能. 物理学报, 2022, 71(11): 326.
[14] XIE H, ZHAO L D, KANATZIDIS M G.Lattice dynamics and thermoelectric properties of diamondoid materials.Interdisciplinary Materials, 2024, 3(1): 5.
[15] HUANG Y, LYU T, ZENG M, et al. Manipulation of metavalent bonding to stabilize metastable phase: a strategy for enhancing ZT in GeSe. Interdisciplinary Materials, 2024: 3(4): 607.
[16] YANG D, LUO T, SU X, et al. Unveiling the intrinsic low thermal conductivity of BiAgSeS through entropy engineering in SHS kinetic process. Journal of Inorganic Materials, 2021, 36(9): 991.
[17] GONG H, SU X L, YAN Y G, et al. Ultra-fast synthesis of Cu2S thermoelectric materials under pulsed electric field. Journal of Inorganic Materials, 2019, 34(12): 1295.
[18] PEIAN R, CONG W, PENG Z, et al. Effect of Te and In co-doping on thermoelectric properties of Cu2SnSe3 compounds. Journal of Inorganic Materials, 2022, 37(10): 1079.
[19] YANG J, CAILLAT T.Thermoelectric materials for space and automotive power generation.MRS bulletin, 2006, 31(3): 224.
[20] WANG W C, CHANG Y L.Experimental investigation of thermal deformation in thermoelectric coolers.Strain, 2011, 47: 232.
[21] SNYDER G J, URSELL T S.Thermoelectric efficiency and compatibility.Physical Review Letters, 2003, 91(14): 148301.
[22] SNYDER G J, SNYDER A H.Figure of meritZT of a thermoelectric device defined from materials properties. Energy & Environmental Science, 2017, 10(11): 2280.
[23] 郭凯, 骆军, 赵景泰. 热电材料的基本原理, 关键问题及研究进展. 自然杂志, 2015, 37(3): 175.
[24] 唐昊, 白辉, 吕嘉南, 等. 表面修饰工程协同优化Bi2Te3基微型热电器件的界面性能. 物理学报, 2022, 71(16): 330.
[25] YANG X, SU X L, YAN Y G, et al.Structures and thermoelectric properties of (GeTe)(n)Bi2Te3. Journal of Inorganic Materials, 2021, 36(1): 75.
[26] CHEN Y, SHI Q, ZHONG Y, et al. Ga intercalation in van der Waals layers for advancing p-type Bi2Te3-based thermoelectrics. Chinese Physics B, 2023, 32(6): 067201.
[27] CHI H, LIU W, SUN K, et al. Low-temperature transport properties of Tl-doped Bi2Te3 single crystals. Physical Review B—Condensed Matter and Materials Physics, 2013, 88(4): 045202.
[28] LIU F, ZHANG M, NAN P, et al. Unraveling the origin of donor‐like effect in bismuth-telluride‐based thermoelectric materials. Small Science, 2023, 3(8): 2300082.
[29] LIU D, BAI S, WEN Y, et al. Lattice plainification and band engineering lead to high thermoelectric cooling and power generation in n-type Bi2Te3 with mass production. National Science Review, 2025, 12(2): nwae448.
[30] ZHANG Z, SUN M, LIU J, et al. Ultra-fast fabrication of Bi2Te3 based thermoelectric materials by flash-sintering at room temperature combining with spark plasma sintering. Scientific Reports, 2022, 12(1): 10045.
[31] CHEN C, WANG B, YING P,et al. Microstructure engineered Bi2Te3-based materials with outstanding mechanical and thermoelectric properties. Journal of Alloys and Compounds, 2025, 1020: 179543.
[32] SHI Q, LI J, ZHAO X, et al. Comprehensive insight into p-type Bi2Te3-based thermoelectrics near room temperature. ACS Applied Materials & Interfaces, 2022, 14(44): 49425.
[33] LU Z Q, LIU K K, LI Q, et al. Donor-like effect and thermoelectric performance in p-type Bi0.5Sb1.5Te3 alloy. Journal of Inorganic Materials, 2023, 38(11): 1331.
[34] 李强, 陈硕, 刘可可, 等. n型Bi2Te3基化合物的类施主效应和热电性能. 物理学报, 2023, 72(9): 135.
[35] ZHANG Q, FANG T, LIU F, et al. Tuning optimum temperature range of Bi2Te3‐based thermoelectric materials by defect engineering. Chemistry-An Asian Journal, 2020, 15(18): 2775.
[36] HUANG W, TAN X, CAI J, et al. Synergistic effects improve thermoelectric properties of zone-melted n-type Bi2Te2.7Se0.3. Materials Today Physics, 2023, 32: 101022.
[37] 田源, 汪波, 李存成, 等. 区熔n型碲化铋材料的制备及性能优化. 材料科学与工程学报, 2024, 42(2): 186.
[38] LIU D, STÖTZEL J, SEYRING M, et al. Anisotropic n-type Bi2Te3-In2Te3 thermoelectric material produced by seeding zone melting and solid state transformation. Crystal Growth & Design, 2016, 16(2): 617.
[39] WANG T, ZHOU C, HUANG W, et al. Synergistic improvement of BiI3 and In on thermoelectric properties of zone-melted n-type Bi2Te2.7Se0.3. ACS Applied Materials & Interfaces, 2024, 16(31): 41080.
[40] LIU D, LI X, BORLIDO P M D C, et al. Anisotropic layered Bi2Te3-In2Te3 composites: control of interface density for tuning of thermoelectric properties. Scientific Reports, 2017, 7(1): 43611.
[41] HA H P, HYUN D B, BYUN J Y, et al. Enhancement of the yield of high-quality ingots in the zone-melting growth of p-type bismuth telluride alloys. Journal of Materials Science, 2002, 37(21): 4691.
[42] KIM H S, HEINZ N A, GIBBS Z M, et al. High thermoelectric performance in (Bi0.25Sb0.75)2Te3 due to band convergence and improved by carrier concentration control. Materials Today, 2017, 20(8): 452.
[43] PERRIN D, CHITROUB M, SCHERRER S, et al. Study of the n-type Bi2Te2.7Se0.3 doped with bromine impurity. Journal of Physics and chemistry of solids, 2000, 61(10): 1687.
[44] KAVEI G, KARAMI M.Thermoelectric crystals Bi2Te2.88Se0.12 undoped and doped by CdCl2 or CdBr2 impurities, fabricated and characterized by XRD and Hall effect.Materials Research Bulletin, 2008, 43(2): 239.
[45] CHEN Y R, HWANG W S, HSIEH H L, et al. Thermal and microstructure simulation of thermoelectric material Bi2Te3 grown by zone-melting technique. Journal of Crystal Growth, 2014, 402: 273.
[46] KAVEI G, AHMADI K, KAVEI A.Electrical conductivity variation of (Bi2Te3)0.25(Sb2Te3)0.75 crystal grown using the zone melting method.International Journal of Materials Research, 2013, 104(3): 314.
[47] XIA H, LI X, XU Q.Macro-micro-coupling simulation and space experiment study on zone melting process of bismuth telluride-based crystal materials.Metals, 2022, 12(5): 886.
[48] GUO X, QIN J, JIA X, et al. Quaternary thermoelectric materials: synthesis, microstructure and thermoelectric properties of the (Bi,Sb)2(Te,Se)3 alloys. Journal of Alloys and Compounds, 2017, 705: 363.
[49] CHAUHAN N S, PYRLIN S V, LEBEDEV O I, et al. Compositional fluctuations mediated by excess tellurium in bismuth antimony telluride nanocomposites yield high thermoelectric performance. The Journal of Physical Chemistry C, 2021, 125(37): 20184.
[50] LIU Y, ZHANG Y, LIM K H, et al. High thermoelectric performance in crystallographically textured n-type Bi2Te3-xSex produced from asymmetric colloidal nanocrystals. ACS Nano, 2018, 12(7): 7174.
[51] VASIL’EV A, IVANOV O, YAPRYNTSEV M, et al. Aspects of the microstructure and thermoelectric properties of a two-phase ceramic material based on the high-entropy system Bi-Sb-Te-Se-S. Glass and Ceramics, 2023, 80(1): 52.
[52] CHEN H W, CHEN B C, WU H J.Dilute Sb doping yields softer p‐type Bi2Te3 thermoelectrics.Advanced Electronic Materials, 2024, 10(6): 2300793.
[53] GUAN X, LIU Z, MA N, et al. High-performance p-type Bi2Te3-based thermoelectric materials with a wide temperature range obtained by direct Sb doping. Acta Metallurgica Sinica (English Letters), 2024, 2024: 1.
[54] WITTING I T, RICCI F, CHASAPIS T C, et al. The thermoelectric properties of n-type bismuth telluride: bismuth selenide alloys Bi2Te3-xSex. Research, 2020, 2020: 4361703.
[55] LI Y, BAI S, WEN Y, et al. Realizing high-efficiency thermoelectric module by suppressing donor-like effect and improving preferred orientation in n-type Bi2(Te,Se)3. Science Bulletin, 2024, 69(11): 1728. |