• • 下一篇
徐锦涛1,2, 高攀3, 何唯一1, 蒋圣楠1, 潘秀红1, 汤美波1, 陈锟1, 刘学超1
收稿日期:
2025-02-24
修回日期:
2025-03-17
通讯作者:
高 攀, 教授. E-mail:32128@sdju.edu.cn; 刘学超, 研究员. E-mail: xcliu@mail.sic.ac.cn
作者简介:
徐锦涛(1999-), 男, 硕士研究生. E-mail: 2781659973@qq.com
基金资助:
XU Jintao1,2, GAO Pan3, HE Weiyi1, JIANG Shengnan1, PAN Xiuhong1, TANG Meibo1, CHEN Kun1, LIU Xuechao1
Received:
2025-02-24
Revised:
2025-03-17
Contact:
GAO Pan, professor. E-mail: 32128@sdju.edu.cn; LIU Xuechao, professor. E-mail: xcliu@mail.sic.ac.cn
About author:
XU Jintao (1999-), male, Master candidate. E-mail: 2781659973@qq.com
Supported by:
摘要: 碳化硅(SiC)作为一种典型的宽禁带半导体材料,在大功率、高频、高温电子器件应用中的重要性日益凸显。近年来,SiC半导体已成为新能源汽车中电驱动模块和充电模块的主要功率器件材料,相比Si基的绝缘栅极双极型晶体管(Insulated Gate Bipolar Transistors, IGBTs)少数载流子器件,SiC材料能够以高频器件结构的多数载流子器件(肖特基势垒二极管和MOSFET)实现高耐压,从而同时具有高耐压、低导通电阻、高频的特性。未来,SiC在交通新能源电动航空器及低空经济中的电动垂直起降航空器(Electric Vertical Take-off and Landing, eVTOL)、AR、光伏逆变与轨道交通等领域也将扮演不可或缺的角色。在众多SiC晶型中,3C-SiC具有独特的立方结构,并且有更高的热导率(500 W/(m·K))与沟道迁移率(约300 cm²/(V·s)),展现了显著的应用潜力和研究价值。本文概述了3C-SiC晶体结构特点、基本物理特性、应用优势以及主要生长方法,包括化学气相沉积法(CVD)、持续供料物理气相传输法(CF-PVT)、升华外延法(SE)和顶部籽晶溶液法(TSSG),并综述了以上几种技术方法制备3C-SiC晶体的研究进展与最新成果,重点分析讨论了气相和液相生长方法的热力学特性与生长机理,并对微观层面的晶体生长过程进行了分析总结,展望了3C-SiC晶体未来发展和应用方向。
中图分类号:
徐锦涛, 高攀, 何唯一, 蒋圣楠, 潘秀红, 汤美波, 陈锟, 刘学超. 3C-SiC晶体制备研究进展[J]. 无机材料学报, DOI: 10.15541/jim20250081.
XU Jintao, GAO Pan, HE Weiyi, JIANG Shengnan, PAN Xiuhong, TANG Meibo, CHEN Kun, LIU Xuechao. Recent Progress in Preparation of Single Crystal 3C-SiC[J]. Journal of Inorganic Materials, DOI: 10.15541/jim20250081.
[1] KIMOTO T.Material science and device physics in SiC technology for high-voltage power devices. Japanese Journal of Applied Physics, 2015, 54(4): 040103. [2] MATSUNAMI H.Fundamental research on semiconductor SiC and its applications to power electronics.Proceedings of the Japan Academy, Series B, 2020, 96(7): 235. [3] HAMADA K, NAGAO M, AJIOKA M,et al. SiC-Emerging power device technology for next-generation electrically powered environmentally friendly vehicles. IEEE Transactions on Electron Devices, 2014, 62(2): 278. [4] CHIU P, DOGMUS E.Power SiC 2022 market and technology report product brochure.Yole Développement, 2022, 1: 1. [5] LIMPIJUMNONG S, LAMBRECHT W.Total energy differences between SiC polytypes revisited.Physical Review B, 1998, 57: 12017. [6] WELLMANN P J.Review of SiC crystal growth technology.Semiconductor Science and Technology, 2018, 33(10): 103001. [7] CHENG Z, LIANG J, KAWAMURA K,et al. High thermal conductivity in wafer-scale cubic silicon carbide crystals. Nature Communications, 2022, 13(1): 7201. [8] SYVAJARVI M, Ma Q B, JOKUBAVICIUS V,et al. Cubic silicon carbide as a potential photovoltaic material. Solar Energy Materials and Solar Cells, 2016, 145: 104. [9] SCHONER A, KRIEGER M, PENSL G, ,et al. Fabrication. Fabrication and characterization of 3C-SiC-based MOSFETs. Chem.Vap. Depos., 2006, 12: 523. [10] UCHIDA H, MINAMI A.SAKATA,et al. High temperature performance of 3C-SiC MOSFETs with high channel mobility. Mater. Sci, Forum, 2012, 717: 1109. [11] VIA F, ZIMBONE M, BONGIORNO C,et al. New approaches and understandings in the growth of cubic silicon carbide. Materials, 2021, 14(18): 5348. [12] PUSCHE R, HUNDHAUSEN M, LEY L,et al. Temperature induced polytype conversion in cubic silicon carbide studied by Raman spectroscopy. Journal of Applied Physics, 2004, 96(10): 5569. [13] SCHOLER M, LAVIA F, MAUCERI M,et al. Overgrowth of protrusion defects during sublimation growth of cubic silicon carbide using free-standing cubic silicon carbide substrates. Crystal growth & design, 2021, 21(7): 4046. [14] KOLLMUSS M, LAVIA F, WELLMANN P J.Effect of growth conditions on the surface morphology and defect density of CS-PVT-grown 3C-SiC.Crystal Research and Technology, 2023, 58(7): 2300034. [15] SCHUH P, STEINER J, LAVIA F,et al. Limitations during vapor phase growth of bulk (100) 3C-SiC using 3C-SiC-on-SiC seeding stacks. Materials, 2019, 12(15): 2353. [16] 施尔畏. 碳化硅晶体生长与缺陷. 北京: 科学出版社, 2012: 79-84. [17] SCHUH P.Sublimation Epitaxy of Bulk-like Cubic Silicon Carbide. Universität Erlangen-Nürnberg Ph. D. Thesis, 2019: 21-22. [18] LEE K K, PENSL G, SOUEIDAN M,et al. Very low interface state density from thermally oxidized single-domain 3C-SiC/6H-SiC grown by vapour-liquid-Solid mechanism. Jpn. J. Appl. Phys., 2006, 45(9): 6823. [19] SCHÖNER A, KRIEGER M, PENSL G,et al. Fabrication and characterization of 3C-SiC-based MOSFETs. Chem. Vap. Deposition, 2006, 12(8/9): 523. [20] ANZALONE R, PRIVITERA S, CAMARDA M,et al. Interface state density evaluation of high quality hetero-epitaxial 3C-SiC(001) for high-power MOSFET applications. Mater. Sci. Eng. B, 2015, 198: 14. [21] TANKEBLUE SEMICONDUCTOR CO., LTD. Product Center.(2025-02-01) [2025-03-07].https://www.tankeblue.com/product12/info.html?id=18. [22] BEIJING LATTICE SEMICONDUCTOR CO., LTD. Product Center.(2025-02-01) [2025-03-07]. https://www.jinggelingyu.com/product/61.html. [23] BEAUCARNE G, BROWN A S, KEEVERS M J,et al. The impurity photovoltaic (IPV) effect in wide-bandgap semiconductors: an opportunity for very-high-efficiency solar cells? Prog. Photovoltaics Res. Appl., 2002, 10(5): 345. [24] SYVAJARVI M.et al.Cubic silicon carbide as a potential photovoltaic material.Sol. Energy Mater. Sol. Cells, 2016, 145: 104. [25] ICHIKAWA N, KATO M, ICHIMURA M.Photocathode for hydrogen generation using 3C-SiC epilayer grown on vicinal off-angle 4H-SiC substrate.Appl. Phys. Express, 2015, 8(9): 091301. [26] SUN J,JOKUBAVICIUS V,GAO L,et al. Solar driven energy conversion applications based on 3C-SiC. Mat. Sci. Forum, 2016, 858: 1028. [27] CHRISTLE D J, KLIMOV P V, CASAS C F D L,et al. Isolated spin qubits in SiC with a high-fidelity infrared spin-to-photon interface. Phys. Rev. X, 2017, 7(2): 021046. [28] SCHÖLER M, LEDERER M W, SCHUH P,et al. Intentional incorporation and tailoring of point defects during sublimation growth of cubic silicon carbide by variation of process parameters. Phys. Status Solidi B, 2019, 257(1): 1900286. [29] SCHÖLER M, BRECHT C, WELLMANN P J. Annealing-induced changes in the nature of point defects in sublimation-grown cubic silicon carbide.Materials, 2019, 12(15): 2487. [30] SAMEERA, JANNATUN N, MOHAMMAD A I.Cubic silicon carbide (3C-SiC) as a buffer layer for high efficiency and highly stable CdTe solar cell.Optical Materials, 2022, 123: 111911. [31] HEIDARZADEH H.Performance analysis of cubic silicon carbide solar cell as an appropriate candidate for high temperature application.Optical and Quantum Electronics, 2020, 52(4):192. [32] SYVÄJÄRVI, MIKAEL, QUANBAO M. Cubic silicon carbide as a potential photovoltaic material.Solar Energy Materials and Solar Cells, 2016, 145: 104. [33] LI H, ZHOU Z, CAO X.Fabrication and performance of 3C-SiC photocathode materials for water splitting.Progress in Natural Science: Materials International, 2024, 178: 21. [34] BASAK N.Fabrication and Characterization of 3C-silicon Carbide Micro Sensor for Wireless Blood Pressure Measurements. Ph. D. Thesis, 2008. [35] LEBEDEV A A, PETROV V N, TITKOV A N.Heteropolytype structures with SiC quantum dots.Technical physics letters, 2005, 31: 997. [36] NAGASAWA H, YAGI K.3C-SiC single-crystal films grown on 6 inch Si substrates.Physica Status Solidi (b), 1997, 202(1): 335. [37] SUN Q Y.Study on Structure Control and Properties of 3C-SiC Thin Films Prepared by Laser CVD Method. Wuhan: Master's thesis, Wuhan University of Technology, 2023: 26-27. [38] NAGASAWA H, YAGI K, KAWAHARA T.3C-SiC hetero-epitaxial growth on undulant Si (001) substrate.Journal of Crystal Growth, 2002, 237: 1244. [39] 石彪, 朱明星, 陈义, 等. 单晶硅衬底异质外延3C-SiC薄膜研究进展. 硅酸盐通报, 2011, 30(05): 1083. [40] NISHINO S, POWELL J A, WILL H A.Production of large area single crystal wafers of cubic SiC for semiconductor devices.Applied Physics Letters, 1983, 42(5): 460. [41] FLEISCHMAN A J, ZORMAN C A, MEHREGANY M, et al. Epitaxial Growth of 3C-SiC Films on 4-inch Diameter (100) Silicon Wafers by APCVD. Institute of Physics Conference Series, 1996, 142: 197. [42] NAGASAWA H, YAGI K, KAWAHARA T, et al.Low-defect 3C-SiC Grown on Undulant-Si (001) Substrates. Silicon Carbide: Recent Major Advances. Springer Nature Publishing, 2004: 207-228. [43] NISHIGUCHI T, NAKAMURA M, NISHIO K,et al. Heteroepitaxial growth of (111) 3C-SiC on well-lattice-matched (110) Si substrates by chemical vapor deposition. Applied Physics Letters, 2004, 84(16): 3082. [44] NAGASAWA H, YAGI K, KAWAHARA T, et al. 3C-SiC Monocrystals Grown on Undulant Si (001) Substrates. MRS Online Proceedings Library (OPL), 2002, 742: 1-6. [45] NAGASAWA H, KAWAHARA T, YAGI K.Heteroepitaxial growth and characteristics of 3C-SiC on large-diameter Si (001) substrates.Materials Science Forum, 2002, 389: 319. [46] SEVERINO A, BONGIORNO C, PILUSO N,et al. High-quality 6 inch (111) 3C-SiC films grown on off-axis (111) Si substrates. Thin Solid Films, 2010, 518(6): 165. [47] SEVERINO A, CAMARDA M, SCALESE S,et al. Preferential oxidation of stacking faults in epitaxial off-axis (111) 3C-SiC films. Applied Physics Letters, 2009, 95(11): 111905. [48] 梁涛. CVD 法制备 3C-SiC/Si 薄膜研究. 成都: 电子科技大学硕士学位论文, 2006. [49] ZHU P, XU Q, CHEN R, et al. Structural study of β-SiC (001) films on Si (001) by laser chemical vapor deposition. Journal of the American Ceramic Society, 2017, 100(4): 1634. [50] SUN Q, ZHU P, XU Q,et al. High-speed heteroepitaxial growth of 3C-SiC (111) thick films on Si (110) by laser chemical vapor deposition. Journal of the American Ceramic Society, 2018, 101(3):1048. [51] SUN Q, YANG M, LI J,et al. Heteroepitaxial growth of thick 3C-SiC (110) films by laser CVD. Journal of the American Ceramic Society, 2019, 102(8): 4480. [52] LELY J A.The preparation of silicon carbide single crystal and the control of the type and amount of internal impurities.Detsch. Kerm. Ges, 1969, 32: 229. [53] HAMILTON D R.The growth of silicon carbide by sublimation.High Temperature Semiconductor, 1960: 45. [54] TAIROV Y M, TSVETKOV V F.Investigation of growth processes of ingots of silicon carbide single crystals.Journal of Crystal Growth, 1978, 43(2): 209. [55] CHAUSSENDE D, BAILLET F, CHARPENTIER L,et al. Continuous feed physical vapor transport: toward high purity and long boule growth of SiC. Journal of The Electrochemical Society, 2003, 150(10): 653. [56] MANTZARI A, MERCIER F, SOUEIDAN M,et al. Structural characterization of cf-pvt grown bulk 3C-SiC. Materials Science Forum, 2009, 600: 67. [57] SUN G L, GALBEN SANDULACHE I G. Improvements of the continuous feed-physical vapor transport technique (CF-PVT) for the seeded growth of 3C-SiC crystals.Silicon Carbide and Related Materials, 2010, 645: 63. [58] SEMMELROTH K, SCHULZE N, PENSL G.Growth of SiC polytypes by the physical vapour transport technique.Journal of Physics: Condensed Matter, 2004, 16(17): 1597. [59] SEMMELROTH K, KRIEGER M, PENSL G,et al. Growth of cubic SiC single crystals by the physical vapor transport technique. Journal of crystal growth, 2007, 308(2): 241. [60] LATU-ROMAIN L,CHAUSSENDE D,BALLOUD C,et al. Characterization of bulk< 111> 3C-SiC single crystals grown on 4H-SiC by the CF-PVT method. Materials Science Forum, 2006, 527: 99. [61] LATU-ROMAIN L, CHAUSSENDE D, CHAUDOUËT P,et al. Study of 3C-SiC nucleation on (0001) 6H-SiC nominal surfaces by the CF-PVT method. Journal of Crystal Growth, 2005, 275(1/2): E609. [62] TAIROV Y M, TSVETKOV V F, LILOV S K,et al. Studies of growth kinetics and polytypism of silicon carbide epitaxial layers grown from the vapour phase. Journal of Crystal Growth, 1976, 36(1): 147. [63] VODAKOV Y A, ROENKOV A D, RAMM M G, et al. Use of Ta-container for sublimation growth and doping of SiC bulk crystals and epitaxial layer. Physica Status Solidi (b), 1997, 202(1): 177. [64] MOKHOV E N, RAMM M G, ROENKOV A D,et al. Growth of silicon carbide bulk crystals by the sublimation sandwich method. Materials Science and Engineering: B, 1997, 46(1/2/3): 317. [65] JOKUBAVICIUS V, HUANG H H, SCHIMMEL S,et al. Towards bulk-like 3C-SiC growth using low off-axis substrates. Materials Science Forum, 2013, 740: 275. [66] JOKUBAVICIUS V, YAZDI G R, LILJEDAHL R,et al. Lateral enlargement growth mechanism of 3C-SiC on off-oriented 4H-SiC substrates. Crystal Growth & Design, 2014, 14(12): 6514. [67] JOKUBAVICIUS V, YAZDI G R, LILJEDAHL R,et al. Single domain 3C-SiC growth on off-oriented 4H-SiC substrates. Crystal Growth & Design, 2015, 15(6): 2940. [68] VASILIAUSKAS, REMIGIJUS.Sublimation Growth and Performance of Cubic Silicon Carbide. Linköping University Electronic Press Ph. D. Thesis, 2012: 12-13. [69] SCHUH P, LAVIA F, MAUCERI M,et al. Growth of large-area, stress-free, and bulk-like 3C-SiC (100) using 3C-SiC-on-Si in vapor phase growth. Materials, 2019, 12(13): 2179. [70] HOFMANN D H, MÜLLER M H. Prospects of the use of liquid phase techniques for the growth of bulk silicon carbide crystals.Materials Science and Engineering: B, 1999, 61(62): 29. [71] WANG G B, LI H, SHENG D,et al. Research progress on growth of SiC single crystal by high temperature solution method. Journal of Synthetic Crystals, 2022, 51(1): 3. [72] GU P, LEI P, YE S,et al. Research progress on the growth of silicon carbide single crystal by top seed solution method and its key problems. Journal of Synthetic Crystals, 2024, 53(5): 741. [73] WANG G B, SHENG D, LI H,et al. Influence of interfacial energy on the growth of SiC single crystals from high temperature solutions. CrystEngComm, 2023, 25(4): 560. [74] YOSHIKAWA T, KAWANISHI S, TANAKA T.Solution growth of silicon carbide using Fe-Si solvent. Japanese Journal of Applied Physics, 2010, 49(5): 051302. [75] YAMAMOTO Y, HARADA S, SEKI K,et al. Low-dislocation-density 4H-SiC crystal growth utilizing dislocation conversion during solution method. Applied Physics Express, 2014, 7(6): 065501. [76] DAIKOKU H, KADO M, SEKI A,et al. Solution growth on concave surface of 4H-SiC crystal. Crystal Growth & Design, 2016, 16(3): 1256. [77] KAWANISHI S, SHIBATA H, YOSHIKAWA T.Contribution of dislocations in SiC seed crystals on the melt-back process in SiC solution growth.Materials, 2022, 15(5): 1796. [78] MERCIER F, KIMHAK O, LORENZZI J,et al. Is the liquid phase a viable approach for bulk growth of 3C-SiC? Materials Science Forum, 2010, 645: 67. [79] CHAUSSENDE D.Vapor phasevs. liquid phase: what is the best choice for the growth of bulk 3C-SiC crystals? AIP Conference Proceedings, 2010, 1292(1): 1. [80] FERRO G.Overview of 3C-SiC crystalline growth.Materials Science Forum, 2010, 645: 49. [81] WANG G B, SHENG D, YANG Y,et al. High-quality and wafer-scale cubic silicon carbide single crystals. Energy & Environmental Materials, 2023, 18: 12678. [82] SHENG D, WANG G, YANG Y,et al. Modeling and suppressing interfacial instability in growth of SiC from high-temperature solutions. Crystal Growth & Design, 2025, 25(4): 1211. [83] SCACE R I, SLACK G A.Solubility of carbon in silicon and germanium.The Journal of Chemical Physics, 1959, 30(6): 1551. [84] LIANG G Q, QIAN H, SU YL,et al. Review of solution growth techniques for 4H-SiC single crystal. China Foundry, 2023, 20(2): 159. [85] MITANI T, KOMATSU N, TAKAHASHI T,et al. Growth rate and surface morphology of 4H-SiC crystals grown from Si-Cr-C and Si-Cr-Al-C solutions under various temperature gradient conditions. Journal of Crystal Growth, 2014, 401: 681. [86] NARUMI T, KAWANISHI S, YOSHIKAWA T,et al. Thermodynamic evaluation of the C-Cr-Si, C-Ti-Si, and C-Fe-Si systems for rapid solution growth of SiC. Journal of Crystal Growth, 2014, 408: 25. [87] MITANI T, KOMATSU N, TAKAHASHI T,et al. Effect of aluminum addition on the surface step morphology of 4H-SiC grown from Si-Cr-C solution. Journal of Crystal Growth, 2015, 423: 45. |
[1] | 胡智超, 杨鸿宇, 杨鸿程, 孙成礼, 杨俊, 李恩竹. P-V-L键理论在微波介质陶瓷性能调控中的应用[J]. 无机材料学报, 2025, 40(6): 609-626. |
[2] | 吴琼, 沈炳林, 张茂华, 姚方周, 邢志鹏, 王轲. 铅基织构压电陶瓷研究进展[J]. 无机材料学报, 2025, 40(6): 563-574. |
[3] | 张碧辉, 刘小强, 陈湘明. Ruddlesden-Popper结构杂化非常规铁电体的研究进展[J]. 无机材料学报, 2025, 40(6): 587-608. |
[4] | 吴杰, 杨帅, 王明文, 李景雷, 李纯纯, 李飞. 铅基织构压电陶瓷的发展历程、现状与挑战[J]. 无机材料学报, 2025, 40(6): 575-586. |
[5] | 姜昆, 李乐天, 郑木鹏, 胡永明, 潘勤学, 吴超峰, 王轲. PZT陶瓷的低温烧结研究进展[J]. 无机材料学报, 2025, 40(6): 627-638. |
[6] | 田睿智, 兰正义, 殷杰, 郝南京, 陈航榕, 马明. 基于微流控技术的纳米无机生物材料制备: 原理及其研究进展[J]. 无机材料学报, 2025, 40(4): 337-347. |
[7] | 张继国, 吴田, 赵旭, 杨钒, 夏天, 孙士恩. 钠离子电池正极材料循环稳定性提升策略及产业化进程[J]. 无机材料学报, 2025, 40(4): 348-362. |
[8] | 殷杰, 耿佳毅, 王康龙, 陈忠明, 刘学建, 黄政仁. SiC陶瓷的3D打印成形与致密化新进展[J]. 无机材料学报, 2025, 40(3): 245-255. |
[9] | 谌广昌, 段小明, 朱金荣, 龚情, 蔡德龙, 李宇航, 杨东雷, 陈彪, 李新民, 邓旭东, 余瑾, 刘博雅, 何培刚, 贾德昌, 周玉. 直升机特定结构先进陶瓷材料研究进展与应用展望[J]. 无机材料学报, 2025, 40(3): 225-244. |
[10] | 范晓波, 祖梅, 杨向飞, 宋策, 陈晨, 王子, 罗文华, 程海峰. 质子调控型电化学离子突触研究进展[J]. 无机材料学报, 2025, 40(3): 256-270. |
[11] | 海热古·吐逊, 郭乐, 丁嘉仪, 周嘉琪, 张学良, 努尔尼沙·阿力甫. 上转换荧光探针辅助的光学成像技术在肿瘤显影中的应用研究进展[J]. 无机材料学报, 2025, 40(2): 145-158. |
[12] | 孙树娟, 郑南南, 潘昊坤, 马猛, 陈俊, 黄秀兵. 单原子催化剂制备方法的研究进展[J]. 无机材料学报, 2025, 40(2): 113-127. |
[13] | 陶桂龙, 支国伟, 罗添友, 欧阳佩东, 衣新燕, 李国强. 空腔型薄膜体声波滤波器的关键技术进展[J]. 无机材料学报, 2025, 40(2): 128-144. |
[14] | 周帆, 田志林, 李斌. 热防护系统用碳化物超高温陶瓷抗烧蚀涂层研究进展[J]. 无机材料学报, 2025, 40(1): 1-16. |
[15] | 魏相霞, 张晓飞, 徐凯龙, 陈张伟. 增材制造柔性压电材料的现状与展望[J]. 无机材料学报, 2024, 39(9): 965-978. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||