无机材料学报

• •    

包边复合结构Sm:LuAG/Nd:LuAG激光陶瓷的制备及性能研究

韩伟伟1,2, 黄东2, 李廷松2, 李江2,3   

  1. 1.上海大学 微电子学院,上海 201800;
    2.中国科学院 上海硅酸盐研究所,透明陶瓷研究中心,上海 201899;
    3.中国科学院大学 材料科学与光电工程中心, 北京 100049
  • 收稿日期:2025-04-06 修回日期:2025-05-04
  • 通讯作者: 李 江, 研究员. E-mail: lijiang@mail.sic.ac.cn
  • 作者简介:韩伟伟(1998-), 男, 硕士研究生. E-mail: hw18800205253@163.com
  • 基金资助:
    国家重点研发计划项目(2023YFB3812000)

Fabrication and Properties of Sm:LuAG/Nd:LuAG Composite Laser Ceramics with Cladding Structure

HAN Weiwei1,2, HUANG Dong2, LI Tingsong2, LI Jiang2,3   

  1. 1. School of Microelectronics, Shanghai University, Shanghai 201800, China;
    2. Transparent Ceramics Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China;
    3. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2025-04-06 Revised:2025-05-04
  • Contact: LI Jiang, professor. E-mail: lijiang@mail.sic.ac.cn
  • About author:HAN Weiwei (1998-), male, Master candidate. E-mail: hw18800205253@163.com
  • Supported by:
    National Key R&D Program of China (2023YFB3812000)

摘要: 在高功率的泵浦模式下,热效应是限制激光器性能提升的主要因素之一,通过增大增益介质的口径可以增强热量的扩散,从而降低热效应。然而,随着增益介质的横纵比变大,横向于主光束传播放大的自发辐射会消耗上能级反转粒子数,产生寄生振荡效应。对增益介质的侧面进行包边的结构设计,能够有效地吸收横向辐射光,抑制寄生振荡效应。对于具有高重复频率的高能固体激光器,应优先选择具有合适饱和通量的增益介质,其中Nd∶LuAG透明陶瓷因其优异的光学、机械和热力学综合性能,展现出更大的发展潜力。Sm:LuAG透明陶瓷在1064 nm处具有高的吸收系数,在808 nm处具有优异的理论光学透过率,且与Nd:LuAG具有相近的折射率,是应用于Nd:LuAG激光陶瓷包边层的最佳材料之一。本研究以商业Lu2O3、α-Al2O3、Nd2O3及Sm2O3的粉体作为实验原料,采用正硅酸乙酯(TEOS, Tetraethoxysilane)和CaO作为烧结助剂,经过真空预烧(1825 ℃×20 h)结合热等静压烧结(1750 ℃×3 h)制备了5%Sm:LuAG/1%Nd:LuAG(均为原子百分数)包边复合激光陶瓷(ϕ56.0 mm×4.8 mm)。包边陶瓷中Nd:LuAG增益区的直线透过率在1064 nm处达到81.5%,Sm:LuAG包边区在808 nm处的直线透过率为78.6%。

关键词: 激光陶瓷, 包边复合结构, Sm:LuAG/Nd:LuAG, 显微结构, 光学性能

Abstract: For high power lasers, the thermal effect imposes a limit to the power density dissipated inside the gain element, while it can be reduced by increasing the size of the gain medium, and it will enhance heat dissipation. However, when the aspect ratio of the gain medium is large, spontaneous fluorescence will be amplified to very high power. Transverse propagation of spontaneous fluorescence induces amplified spontaneous emission, triggering detrimental parasitic oscillations. A promising solution involves applying cladding layers to the lateral surfaces of gain media to absorb stray radiation. For high repetition rate nanosecond high power solid-state lasers, it is essential to choose gain media with moderate saturation flux. Among these, Nd:LuAG transparent ceramics have shown significant potential due to their outstanding optical, mechanical, and thermodynamic properties. Additionally, Sm:LuAG transparent ceramics, with their high absorption coefficient at 1064 nm, excellent theoretical optical transmittance at 808 nm, and a refractive index similar to that of Nd:LuAG, have emerged as one of the best materials for cladding Nd:LuAG laser ceramics. The commercial Lu2O3, α-Al2O3, Nd2O3 and Sm2O3 powders were used as raw materials. The 5% Sm:LuAG/1% Nd:LuAG (in atomic) cladding laser ceramics (ϕ56.0 mm×4.8 mm) were fabricated by vacuum pre-sintering at 1825 ℃ for 20 h and HIP post-treatment at 1750 ℃ for 3 h using TEOS and CaO as sintering additives. The in-line transmittances of the gain area are 81.5% at 1064 nm, and the cladding area is 78.6% at 808 nm.

Key words: laser ceramics, cladding composite ceramics, Sm:LuAG/Nd:LuAG, microstructure, optical properties

中图分类号: