[1] SPAETH M L, MANES K R, KALANTAR D H, et al. Description of the NIF laser. Fusion Science and Technology, 2016, 69(1): 25. [2] BAYRAMIAN A, ACEVES S, ANKLAM T, et al. Compact efficient laser systems required for laser inertial fusion energy. Fusion Science and Technology, 2011, 60(1): 28. [3] DANSON C N, HAEFNER C, BROMAGE J, et al. Petawatt and exawatt class lasers worldwide. High Power Laser Science and Engineering, 2019, 7(3): 172. [4] ZHU Z D, LV S W, ZHANG H Y, et al. Highly efficient actively Q-switched Nd:YAG laser. Optics Express, 2021, 29(20): 32325. [5] BANERJEE S, ERTEL K, MASON P D, et al. DiPOLE: a 10 J, 10 Hz cryogenic gas cooled multi-slab nanosecond Yb:YAG laser. Optics Express, 2015, 23(15): 19542. [6] BROWN D C, MCMILLEN C D, MOORE C,et al. Spectral properties of hydrothermally-grown Nd:LuAG, Yb:LuAG, and Yb:Lu2O3 laser materials. Journal of Luminescence, 2014, 148: 26. [7] GONCALVES T, ALBACH D, VINCENT B,et al. 14 J/2 Hz Yb3+:YAG diode pumped solid state laser chain. Optics Express, 2013, 21(1): 855. [8] 冯亚刚, 田丰, 刘子玉, 等. 层状复合结构YAG/Yb∶YAG透明陶瓷的制备与性能研究. 人工晶体学报, 2024, 53(11): 1901. [9] YAGI H, BISSON J F, UEDA K, et al. Y3Al5O12 ceramic absorbers for the suppression of parasitic oscillation in high-power Nd:YAG lasers. Journal of Luminescence, 2006, 121(1): 88. [10] HAEFNER C L, BAYRAMIAN A, BETTS S, et al. High average power diode pumped petawatt laser systems a new generation of lasers enabling precision science and commercial applications. Proceedings of SPIE, 2017, 10241: 1024102. [11] LEBEGUE P, DE SOUSA J, RAPENOU C.Coherent combining of large-aperture high-energy Nd:glass laser amplifiers.High Power Laser Science and Engineering, 2025, 13: 4. [12] RONG X F, YANG Y M, PENG S Z,et al. Sub-nanosecond diode-pumped passively Q-switched Nd:LuAG ceramic microchip lasers. Optics & Laser Technology, 2023, 158: 108901. [13] FU Y L, LI J, LIU Y,et al. Fabrication, microstructure and laser performance of Nd3+-doped Lu3Al5O12 transparent ceramics. Journal of the European Ceramic Society, 2016, 36(3): 655. [14] LIU T H, FENG T, SUI Z,et al. 50 mm-aperture Nd:LuAG ceramic nanosecond laser amplifier producing 10 J at 10 Hz. Optics Express, 2019, 27(11): 15595. [15] ZHANG W S, LI LJ, LIANG H.Efficient acousto-optically Q-switched Tm:LuAG laser end-pumped by a laser diode at 1.7 μm.Applied Physics B-Lasers and Optics, 2025, 131(3): 65. [16] IKESUE A, FURUSATO I, KAMATA K, et al. Fabrication of polycrystal line, transparent YAG ceramics by a solid-state reaction method. Journal of the American Ceramic Society, 1995, 78(1): 225. [17] TIAN F, IKESUE A, LI J.Progress and perspectives on composite laser ceramics: A review.Journal of the European Ceramic Society, 2022, 42(5): 1833. [18] LIU Z Y, FENG Y G, CHEN H H, et al. Microstructure and properties characterization of Yb:Lu2O3 transparent ceramics from co-precipitated nano-powders. International Journal of Applied Ceramic Technology, 2023, 20(6): 3365. [19] LI X Y, ZHANG L X, HU D J,et al. Fabrication and characterizations of Tb3Al5O12-based magneto-optical ceramics. International Journal of Applied Ceramic Technology, 2023, 20(1): 493. [20] LI X, HU C, LIU Q,et al. Fluoride transparent ceramics for solid-state lasers: a review. Journal of Advanced Ceramics, 2024, 13(12): 1891. [21] YE J H, ZHOU Z Z, HU C,et al. Yb:Sc2O3 Transparent ceramics fabricated from co-precipitated nano-powders: microstructure and optical property. Journal of Inorganic Materials, 2025, 40(2): 215. [22] HUSS R, WILHELM R, KOLLECK C,et al. Suppression of parasitic oscillations in a core-doped ceramic Nd:YAG laser by Sm:YAG cladding. Optics Express, 2010, 18(12): 13094. [23] TIMOSHENKO A D, MATVIENKO O O, DOROSHENKO A G,et al. Highly-doped YAG:Sm3+ transparent ceramics: Effect of Sm3+ ions concentration. Ceramics International, 2023, 49(5): 7524. [24] WANG X, YU H, LI P,et al. Femtosecond laser-based processing methods and their applications in optical device manufacturing: a review. Optics & Laser Technology, 2021, 135: 106687. [25] JI S H, HUANG W F, FENG T,et al. Modeling and measurement of thermal effect in a flashlamp-pumped direct-liquid-cooled split-disk Nd:LuAG ceramic laser amplifier. Nature Photonics, 2021, 8(4): 97. [26] HUß R, WILHELM R, NEUMANN J,et al. Passively Q-switched core-doped ceramic Nd:YAG laser with Sm:YAG cladding. Lasers and Electro-Optics, 2007, 5: 1303. [27] YAGI H, BISSON J F, UEDA K,et al. Y3Al5O12 ceramic absorbers for the suppression of parasitic oscillation in high-power Nd:YAG lasers. Journal of Luminescence, 2006, 121(1): 88. [28] YAGI H, YANAGITANI T.Recent progress in transparent polycrystalline ceramics for optical applications.Laser & Photonics Reviews, 2011, 39(5): 300. [29] MA J, LU T T, ZHU X L,et al. 1.57 MW peak power pulses generated by a diode-pumped Q-switched Nd:LuAG ceramic laser. Chinese Optics Letters, 2017, 15(12): 121402. [30] KONG W, TSUNEKANE M, TAIRA T,et al. Diode edge-pumped passively Q-switched microchip laser. Optical Engineering, 2015, 54(9): 090501. [31] STEVENSON A J, LI X, MARTINEZ M A,et al. Effect of SiO2 on densification and microstructure development in Nd:YAG transparent ceramics, Journal of the American Ceramic Society, 2011, 94(5):1380. [32] JING Y Q, TIAN F, GUO L H,et al. Effect of TEOS content on microstructure evolution and optical properties of Sm:YAG transparent ceramics, Optical Materials, 2024, 147: 114681. [33] LIN Z, HUANG X, LAN J, et al. Efficient and Compact Diode-Pumped Nd:YAG Lasers at 1073 and 1078 nm, IEEE Photonic, 2016, 8(2): 1500808. |