无机材料学报 ›› 2026, Vol. 41 ›› Issue (1): 113-118.DOI: 10.15541/jim20250142 CSTR: 32189.14.10.15541/jim20250142

• 研究论文 • 上一篇    下一篇

包边复合结构Sm:LuAG/Nd:LuAG激光陶瓷的制备及性能研究

韩伟伟1,2(), 黄东2, 李廷松2, 李江2,3()   

  1. 1.上海大学 微电子学院, 上海 201800
    2.中国科学院 上海硅酸盐研究所, 透明陶瓷研究中心, 上海 201899
    3.中国科学院大学 材料科学与光电工程中心, 北京 100049
  • 收稿日期:2025-04-06 修回日期:2025-05-04 出版日期:2026-01-20 网络出版日期:2025-06-10
  • 通讯作者: 李 江, 研究员. E-mail: lijiang@mail.sic.ac.cn
  • 作者简介:韩伟伟(1998-), 男, 硕士研究生. E-mail: hw18800205253@163.com
  • 基金资助:
    国家重点研发计划(2023YFB3812000)

Sm:LuAG/Nd:LuAG Composite Laser Ceramics with Cladding Structure: Fabrication and Properties

HAN Weiwei1,2(), HUANG Dong2, LI Tingsong2, LI Jiang2,3()   

  1. 1. School of Microelectronics, Shanghai University, Shanghai 201800, China
    2. Transparent Ceramics Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
    3. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2025-04-06 Revised:2025-05-04 Published:2026-01-20 Online:2025-06-10
  • Contact: LI Jiang, professor. E-mail: lijiang@mail.sic.ac.cn
  • About author:HAN Weiwei (1998-), male, Master candidate. E-mail: hw18800205253@163.com
  • Supported by:
    National Key R&D Program of China(2023YFB3812000)

摘要:

在高功率的泵浦模式下, 热效应是限制激光器性能提升的主要因素之一, 通过增大增益介质的口径可以增强热量扩散, 从而降低热效应。然而, 随着增益介质的横纵比增大, 横向于主光束传播放大的自发辐射会消耗上能级反转粒子数, 产生寄生振荡效应。对增益介质侧面进行包边的结构设计, 能够有效吸收横向辐射光, 抑制寄生振荡效应。对于具有高重复频率的高能固体激光器, 应优先选择具有合适饱和通量的增益介质, 其中Nd:LuAG透明陶瓷因其优异的光学、机械和热力学综合性能, 展现出更大的发展潜力。Sm:LuAG透明陶瓷在1064 nm处具有高的吸收系数, 在808 nm处具有优异的理论光学透过率, 且与Nd:LuAG具有相近的折射率, 是应用于Nd:LuAG激光陶瓷包边层的最佳材料之一。本研究以商业Lu2O3α-Al2O3、Nd2O3及Sm2O3粉体作为实验原料, 采用正硅酸乙酯(TEOS, Tetraethoxysilane)和CaO作为烧结助剂, 经过真空预烧(1825 ℃×20 h)结合热等静压烧结(1750 ℃×3 h)制备了5% Sm:LuAG/1% Nd:LuAG(均为原子百分数)包边复合激光陶瓷(φ56.0 mm×4.8 mm)。包边陶瓷中Nd:LuAG增益区在1064 nm处的直线透过率达到81.5%, Sm:LuAG包边区在808 nm处的直线透过率为78.6%。

关键词: 激光陶瓷, 包边复合结构, Sm:LuAG/Nd:LuAG, 显微结构, 光学性能

Abstract:

For high power lasers, the thermal effect imposes a limit on the power density dissipated inside the gain element, while it can be reduced by increasing the size of gain medium, which enhances heat dissipation. However, when aspect ratio of the gain medium increases, spontaneous fluorescence can be drastically amplified. Transverse propagation of spontaneous fluorescence induces amplified spontaneous emission, triggering detrimental parasitic oscillations. A promising solution involves applying cladding layers to the lateral surfaces of gain media to absorb stray radiation. For high repetition rate nanosecond high power solid-state lasers, it is essential to choose gain media with moderate saturation flux. Among these, Nd:LuAG transparent ceramics have shown significant potential due to their outstanding optical, mechanical, and thermodynamic properties. Additionally, Sm:LuAG transparent ceramics, with a high absorption coefficient at 1064 nm, excellent theoretical optical transmittance at 808 nm, and a refractive index similar to that of Nd:LuAG, have emerged as one of the best materials for cladding Nd:LuAG laser ceramics. Here, the 5% Sm:LuAG/1% Nd:LuAG (in atom) cladding laser ceramics (φ56.0 mm×4.8 mm) using commercial Lu2O3, α-Al2O3, Nd2O3 and Sm2O3 powders as raw materials were fabricated by vacuum pre-sintering at 1825 ℃ for 20 h and HIP post-treatment at 1750 ℃ for 3 h with TEOS and CaO as sintering additives. The in-line transmittance of the gain area is 81.5% at 1064 nm, while that of the cladding area is 78.6% at 808 nm.

Key words: laser ceramic, cladding composite structure, Sm:LuAG/Nd:LuAG, microstructure, optical property

中图分类号: