[1] KAUR P, SINGH K.Review of perovskite-structure related cathode materials for solid oxide fuel cells.Ceramics International, 2020, 46(5): 5521. [2] HANIF M B, MOTOLA M, QAYYUM S, et al. Recent advancements, doping strategies and the future perspective of perovskite-based solid oxide fuel cells for energy conversion. Chemical Engineering Journal, 2022, 428: 132603. [3] GAO Y, LING Y H, WANG X X, et al. Sr-deficient medium-entropy Sr1-xCo0.5Fe0.2Ti0.1Ta0.1Nb0.1O3-δ cathodes with high Cr tolerance for solid oxide fuel cells. Chemical Engineering Journal, 2024, 479: 147665. [4] GAO J T, WEI Z Y, YUAN M K, et al. Boosting oxygen reduction activity and CO2 resistance on bismuth ferrite-based perovskite cathode for low-temperature solid oxide fuel cells below 600 °C. Journal of Energy Chemistry, 2024, 90: 600. [5] HAO H R, WANG J H, WANG Z, et al. Elucidating the superwetting FeOOH-modified NiMoO4 electrodes for efficient alkaline oxygen evolution reaction: An in-situ spectroscopy study. Applied Catalysis B-Environmental and Energy, 2025, 363: 124814. [6] XIE M Y, CAI C K, LIU X J, et al. Improved Durability of high-performance intermediate-temperature solid oxide fuel cells with a Ba-doped La0.6Sr0.4Co0.2Fe0.8O3-δ cathode. ACS Applied Materials & Interfaces, 2022, 14(29): 33052. [7] LI J, LI J, YAN D, et al. Promoted Cr-poisoning tolerance of La2NiO4+δ-coated PrBa0.5Sr0.5Co1.5Fe0.5O5+δ cathode for intermediate temperature solid oxide fuel cells. Electrochimica Acta, 2018, 270: 294. [8] CHEN Y, YOO S, LI X X, et al. An effective strategy to enhancing tolerance to contaminants poisoning of solid oxide fuel cell cathodes. Nano Energy, 2018, 47: 474. [9] WANG C C, BECKER T, CHEN K F, et al. Effect of temperature on the chromium deposition and poisoning of La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes of solid oxide fuel cells. Electrochimica Acta, 2014, 139: 173. [10] HUANG J Y, LIU Q, JIANG S P, et al. Promotional role of BaCO3 on the chromium-tolerance of La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes of solid oxide fuel cells. Applied Catalysis B-Environment and Energy, 2023, 321: 122080. [11] YANG Z B, XIA T, DONG Z W, et al. Considerable oxygen reduction activity and durability of BaO nanoparticles-decorated Ln0.94BaCo2O5+δ electrocatalysts. Separation and Purification Technology, 2023, 317: 123936. [12] SUN C W, HUI R, ROLLER J.Cathode materials for solid oxide fuel cells: a review.Journal of Solid State Electrochemistry, 2010, 14(7): 1125. [13] SUN C W.Advances in nanoengineering of cathodes for next-generation solid oxide fuel cells.Inorganic Chemistry Frontiers, 2024, 11(23): 8164. [14] CHEN Z P, JIN F J, LI M F, et al. Double perovskite Sr2CoFeO5+δ: preparation and performance as cathode material for intermediate-temperature solid oxide fuel cells. Journal of Inorganic Materials, 2024, 39(3): 337-344. [15] YUAN M K, GAO Y, LIU L M, et al. High entropy double perovskite cathodes with enhanced activity and operational stability for solid oxide fuel cells. Journal of the European Ceramic Society, 2024, 44(5): 3267. [16] WEI B, SCHROEDER M, MARTIN M.Surface cation segregation and chromium deposition on the double-perovskite oxide PrBaCo2O5+δ. ACS Applied Materials & Interfaces, 2018, 10(10): 8621-8629. [17] SEO H G, STAERZ A, KIM D S, et al. Reactivation of chromia poisoned oxygen exchange kinetics in mixed conducting solid oxide fuel cell electrodes by serial infiltration of lithia. Energy & Environmental Science, 2022, 15(10): 4038. [18] PEI K, ZHOU Y C, XU K, et al. Enhanced Cr-tolerance of an SOFC cathode by an efficient electro-catalyst coating. Nano Energy, 2020, 72: 104704. [19] XIONG C Y, XU S, LI X T, et al. Surface regulating and hetero-interface engineering of an LSCF cathode by CVD for solid oxide fuel cells: integration of improved electrochemical performance and Cr-tolerance. Journal of Materials Chemistry A, 2023, 11(29): 15760. [20] GUO T M, DONG J B, CHEN Z P, et al. Enhanced compatibility and activity of high-entropy double perovskite cathode material for IT-SOFC. Journal of Inorganic Materials, 2023, 38(6): 693. [21] CHEN Z H, MA B, DANG C, et al. Entropy engineering strategies for optimizing solid oxide cell air electrode performance: A review. Journal of Alloys and Compounds, 2025, 1010: 177585. [22] HE F, ZHU F, LIU D L, et al. A reversible perovskite air electrode for active and durable oxygen reduction and evolution reactions via the A-site entropy engineering. Materials Today, 2023, 63: 89. [23] WANG Z, LI J W, YUAN M K, et al. A medium-entropy engineered double perovskite oxide for efficient and CO2-tolerant cathode of solid oxide fuel cells. Sustainable Materials and Technologies, 2024, 40: e00969. [24] OSES C, TOHER C, CURTAROLO S.High-entropy ceramics.Nature Reviews Materials, 2020, 5(4): 295. [25] AKRAMI S, EDALATI P, FUJI M, et al. High-entropy ceramics: Review of principles, production and applications. Materials Science & Engineering R-Reports, 2021, 146: 100644. [26] YANG Y, BAO H, NI H, et al. A novel facile strategy to suppress Sr segregation for high-entropy stabilized La0.8Sr0.2MnO3-δ cathode. Journal of Power Sources, 2021, 482: 228959. [27] LI Z Q, GUAN B, XIA F, et al. High-entropy perovskite as a high-performing chromium-tolerant cathode for solid oxide fuel cells. ACS Applied Materials & Interfaces, 2022, 14(21): 24363. [28] SHEN L Y, DU Z H, ZHANG Y, et al. Medium-entropy perovskites Sr(FeαTiβCoγMnζ)O3-δ as promising cathodes for intermediate temperature solid oxide fuel cell. Applied Catalysis B-Environmental, 2021, 295: 120264. [29] ZHAO L, DRENNAN J, KONG C, et al. Insight into surface segregation and chromium deposition on La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes of solid oxide fuel cells. Journal of Materials Chemistry A, 2014, 2(29): 11114. [30] WANG Y H, ROBSON M J, MANZOTTI A, et al. High-entropy perovskites materials for next-generation energy applications. Joule, 2023, 7(5): 848. [31] DABROWA J, OLSZEWSKA A, FALKENSTEIN A, et al. An innovative approach to design SOFC air electrode materials: high entropy La1-xSrx(Co,Cr,Fe,Mn,Ni)O3-δ (x=0, 0.1, 0.2, 0.3) perovskites synthesized by the Sol-Gel method. Journal of Materials Chemistry A, 2020, 8(46): 24455. [32] LIU Z Q, TANG Z J, SONG Y F, et al. High-entropy perovskite oxide: a new opportunity for developing highly active and durable air electrode for reversible protonic ceramic electrochemical cells. Nano-Micro Letters, 2022, 14(1): 217. [33] ALBEDWAWI S H, ALJABERI A, HAIDEMENOPOULOS G N, et al. High entropy oxides-exploring a paradigm of promising catalysts: a review. Materials & Design, 2021, 202: 109534. [34] ZHANG Y, SHEN L Y, WANG Y H, et al. Enhanced oxygen reduction kinetics of IT-SOFC cathode with PrBaCo2O5+δ Gd0.1Ce1.9O2-δ coherent interface. Journal of Materials Chemistry A, 2022, 10(7): 3495. [35] KIM J H, YOO S, MURPHY R, et al. Promotion of oxygen reduction reaction on a double perovskite electrode by a water-induced surface modification. Energy & Environmental Science, 2021, 14(3): 1506. [36] GAO J T, LIU Y Y, GAO Y,et al. Cobalt-free fluorine doped Bi0.7Sr0.3FeO3 oxides for energetic cathodes of low-temperature solid oxide fuel cells, Chemical Engineering Journal, 2023, 452(4): 139584. |