• • 上一篇
邓恒杨1, 秦翠洁1, 郝胜兰1, 冯光迪1,2, 朱秋香1, 田博博1,2, 褚君浩1, 段纯刚1,3
收稿日期:
2025-02-22
修回日期:
2025-03-14
通讯作者:
朱秋香, 副教授. E-mail: qxzhu@clpm.ecnu.edu.cn; 田博博, 教授. E-mail: bbtian@ee.ecnu.edu.cn
作者简介:
邓恒杨(1999-), 男, 硕士研究生. E-mail: 51254700083@stu.ecnu.edu.cn
DENG Hengyang1, QIN Cuijie1, HAO Shenglan1, FENG Guangdi1,2, ZHU Qiuxiang1, TIAN Bobo1,2, CHU Junhao1, DUAN Chungang1,3
Received:
2025-02-22
Revised:
2025-03-14
Contact:
ZHU Qiuxiang, associate professor. E-mail: 51254700083@stu.ecnu.edu.cn;Tian Bobo, professor. E-mail: bbtian@ee.ecnu.edu.cn
About author:
DENG Hengyang (1999-), male, Master candidate. E-mail: 51254700083@stu.ecnu.edu.cn
Supported by:
摘要: 隧穿二极管在太赫兹和可见光频谱的未来整流领域中具有显著的应用前景,这得益于其拥有飞秒级的隧穿渡越时间。本研究呈现了隧穿距离分别为10 nm和5 nm的TiN/ZnO/Pt 鳍式隧道二极管(Fin tunneling diodes, FTD),它们展现出了优异的特性,其中包括超高的不对称性(10 nm器件为1.6×104,5 nm器件为1.6×103)、零偏压下的高响应度(10 nm器件为25.3 V-1,5 nm器件为28.3 V-1),均超越了传统肖特基二极管的热电压限制,并且两个器件的开启电压(Von)极低,都约为100 mV,这使得它们成为能量转换应用的理想之选。基于技术计算机辅助设计(Technology computer-aided design, TCAD)模拟,所观测到的电子传输不对称性可归因于在不同偏置条件下福勒-诺德海姆隧穿(Fowler-Nordheim tunneling, FNT)和陷阱辅助隧穿(Trap-assisted tunneling, TAT)之间的转变,这在相应的能带排列图中得以阐明。此外,通过对FTDs进行集成,本工作设计了一种具有全波整流特性的整流桥电路,其在太赫兹波段(0.1 THz)的整流性能通过Spice电路仿真得到了验证。本研究为太赫兹能量转换和探测应用提供了一种高效的解决方案。
中图分类号:
邓恒杨, 秦翠洁, 郝胜兰, 冯光迪, 朱秋香, 田博博, 褚君浩, 段纯刚. 基于金属-半导体-金属鳍式隧穿二极管的高频整流桥电路[J]. 无机材料学报, DOI: 10.15541/jim20250076.
DENG Hengyang, QIN Cuijie, HAO Shenglan, FENG Guangdi, ZHU Qiuxiang, TIAN Bobo, CHU Junhao, DUAN Chungang. A Rectifier Bridge Circuit Based on Metal-semiconductor-metal Fin Tunneling Diode for High-frequency Application[J]. Journal of Inorganic Materials, DOI: 10.15541/jim20250076.
[1] KHAN A A, JAYASWAL G, GAHAFFAR F A, et al. Metal-insulator-metal diodes with sub-nanometre surface roughness for energy-harvesting applications. Microelectron. Eng., 2017, 181: 34. [2] DRAGOMAN M, ALDRIGO M.Graphene rectenna for efficient energy harvesting at terahertz frequencies.Appl. Phys. Lett., 2016, 109(11): 113105 [3] OLLER D, OSGOOD R, XU J, et al. Optical rectification in a reconfigurable resistive switching filament. Appl. Phys. Lett., 2019, 115(4): 043101. [4] WEERAKKODY A, BELKADI A, MODDEL G.Nonstoichiometric nanolayered Ni/NiO/Al2O3/CrAu metal-insulator-metal infrared rectenna.ACS Appl. Nano Mater., 2021, 4(3): 2470. [5] BELKADI A, WEERAKKODY A, MODDEL G.Demonstration of resonant tunneling effects in metal-double-insulator-metal (MI(2)M) diodes.Nat. Commun., 2021, 12: 2925. [6] SHAYGAN M, WANG Z, ELSAYED M S,et al. High performance metal-insulator-graphene diodes for radio frequency power detection application. Nanoscale, 2017, 9(33): 11944. [7] SANCHEZ A, DAVIS C F, LIU K C,et al. The MOM tunneling diode: Theoretical estimate of its performance at microwave and infrared frequencies. J. Appl. Phys., 1978, 49(10): 5270. [8] NISHIDA Y, NISHIGAMI N, DIEBOLD S,et al. Terahertz coherent receiver using a single resonant tunnelling diode. Sci. Rep., 2019, 9: 18125. [9] MITROVIC I Z, ALMALKI S, TEKIN S B,et al. Oxides for rectenna technology. Materials (Basel), 2021, 14(18): 5218. [10] ALSHEHRI A H, MISTRY K, NGUYEN V H,et al. Quantum-tunneling metal-insulator-metal diodes made by rapid atmospheric pressure chemical vapor deposition. Adv. Funct. Mater., 2018, 29(7): 1805533. [11] ANDERSON E C, BOUGHER T L, COLA B A.High performance multiwall carbon nanotube-insulator-metal tunnel diode arrays for optical rectification.Adv. Electron. Mater., 2018, 4(3): 1700446. [12] ALSHEHRI A H, SHAHIN A, MISTRY K,et al. Metal-insulator-insulator-metal diodes with responsivities greater than 30 A·W-1 based on nitrogen-doped TiOx and AlOx insulator layers. Adv. Electron. Mater., 2021, 7(11): 2100467. [13] ALIMARDANI N, CONLEY J F.Enhancing metal-insulator-insulator-metal tunnel diodesvia defect enhanced direct tunneling. Appl. Phys. Lett., 2014, 105(8): 082902. [14] SHRIWASTAVA S, TRIPATHI C C.Metal-insulator-metal diodes: a potential high frequency rectifier for rectenna application.J. Electron. Mater., 2019, 48(5): 2635. [15] ZHANG X, GRAJAL J, VAZQUEZ-ROY J L,et al. Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting. Nature, 2019, 566(7744): 368. [16] HOLDEN K E K, QI Y, CONLEY J F. Precision defect engineering of metal/insulator/metal diodes using atomic layer deposition to localize Ni impurities in Al2O3 tunnel barriers.J. Appl. Phys., 2021, 129(14): 144502. [17] SINGH A, RATNADURAI R, KUMAR R,et al. Fabrication and current-voltage characteristics of NiOx/ZnO based MIIM tunnel diode. Appl. Surf. Sci., 2015, 334: 197. [18] RATNADURAI R, KRISHNAN S, STEFANAKOS E, et al.Nanomanufacturability of Thin Film MIM Diodes. In: AIP Conference Proceedings. vol. 1313: American Institute of Physics; 2010: 403-405. [19] PERIASAMY P, BERRY J J, DAMERON A A,et al. Fabrication and characterization of MIM diodes based on Nb/Nb2O5 via a rapid screening technique. Adv. Mater., 2011, 23(27): 3080. [20] PERIASAMY P, GUTHREY H L, ABDULAGATOV A I,et al. Metal-insulator-metal diodes: role of the insulator layer on the rectification performance. Adv. Mater., 2013, 25(9): 1301. [21] MISTRY K, YAVUZ M, MUSSELMAN K P.Simulated electron affinity tuning in metal-insulator-metal (MIM) diodes.J. Appl. Phys., 2017, 121(18): 184504. [22] OZYIGIT D, ULLAH F, GULSARAN A,et al. Manufacturing of quantum-tunneling MIM nanodiodes via rapid atmospheric CVD in terahertz band. Sci. Rep., 2023, 13: 20733. [23] WARD D R, HUSER F, PAULY F,et al. Optical rectification and field enhancement in a plasmonic nanogap. Nat. Nanotechnol., 2010, 5(10): 732. [24] LIU Z, ABE S, SHIMIZU M,et al. Enhanced current density and asymmetry of metal-insulator-metal diodes based on self-assembly of Pt nanoparticles. Appl. Phys. Lett., 2023, 122(9): 093502 [25] HERNER S B, WEERAKKODY A D, BELKADI A,et al. High performance MIIM diode based on cobalt oxide/titanium oxide. Appl. Phys. Lett., 2017, 110(22): 223901. [26] MITROVIC I Z, WEERAKKODY A D, SEDGHI N,et al. Controlled modification of resonant tunneling in metal-insulator-insulator-metal structures. Appl. Phys. Lett., 2018, 112(1): 012902. [27] ALSHEHRI A H, ASGARIMOGHADDAM H, DELUMEAU L V,et al. Combinatorial optimization of metal-insulator-insulator-metal (MIIM) diodes with thickness-gradient films via spatial atomic layer deposition. Adv. Electron. Mater., 2024, 10(11): 2400093. [28] FENG G, ZHU Q, LIU X,et al. A ferroelectric fin diode for robust non-volatile memory. Nat. Commun., 2024, 15: 513. [29] LIU X, FENG G, FENG X, et al. Ultrahigh rectification ratio in an asymmetric metal/semiconductor/metal nanoscale tunneling junction: implications for high-frequency rectifiers. ACS Appl. Nano Mater., 2023, 6(4): 2491. [30] LIU H, ZHANG L, LEBEGUE S,et al. Morphology-electronic effects in ultra-model nanocatalysts under the CO oxidation reaction: the case of ZnO ultrathin films grown on Pt(111). Nanoscale, 2024, 16(43): 20216. [31] CHEN T, YU K, HU H,et al. Engineering electron transport layer with ionic liquid for high-performance quantum dot light-emitting diodes. ACS Appl. Nano Mater., 2025, 8(9): 4573. [32] SHINDE P, HASE Y, DOIPHODE V,et al. Morphology-dependent ZnO/MoS2 heterostructures for enhanced photoelectrochemical water splitting. ACS Appl. Energy Mater., 2025, 8(2): 935. [33] ALIMARDANI N, KING S W, FRENCH B L, et al. Investigation of the impact of insulator material on the performance of dissimilar electrode metal-insulator-metal diodes. J. Appl. Phys., 2014, 116(2): 024508. [34] CONG X, ZHENG Y, HUANG F,et al. Efficiently band-tailored type-III van der Waals heterostructure for tunnel diodes and optoelectronic devices. Nano Research, 2022, 15(9): 8442. [35] LEE G-H, YU Y-J, LEE C,et al. Electron tunneling through atomically flat and ultrathin hexagonal boron nitride. Appl. Phys. Lett., 2011, 99(24): 243114 [36] MA Q, ANDERSEN T I, NAIR N L,et al. Tuning ultrafast electron thermalization pathways in a van der Waals heterostructure. Nat. Phys., 2016, 12(5): 455. [37] VU Q A, LEE J H, NGUYEN V L, et al. Tuning carrier tunneling in van der waals heterostructures for ultrahigh detectivity. Nano Lett., 2017, 17(1): 453. [38] TEKIN S B, ALMALKI S, FINCH H,et al. Electron affinity of metal oxide thin films of TiO2, ZnO, and NiO and their applicability in 28.3 THz rectenna devices. J. Appl. Phys., 2023, 134(8): 084503. [39] FOWLER R H, NORDHEIM L.Electron emission in intense electric fields.Proc. Roy. Soc. A, 1928, 119(791): 173. [40] YU S, GUAN X, WONG H S P. Conduction mechanism of TiN/HfOx/Pt resistive switching memory: a trap-assisted-tunneling model.Appl. Phys. Lett., 2011, 99(6): 063507 [41] CHANG W J, HOUNG M P, WANG Y H.Electrical properties and modeling of ultrathin impurity-doped silicon dioxides.J. Appl. Phys., 2001, 90(10): 5171. [42] TSIARAPAS C, GIRGINOUDI D, DIMITRIADIS E I,et al. Investigation on deep level defects in polycrystalline ZnO thin films. J. Vac. Sci. Tech. B, 2017, 35(3): 031203. |
[1] | 陈梓, 张爱迪, 龚克, 刘海华, 禹钢, 单青松, 刘勇, 曾海波. 具有可调谐和长寿命荧光发射的高亮度、单分散四元CuInZnS@ZnS量子点[J]. 无机材料学报, 2025, 40(4): 433-339. |
[2] | 梁锐辉, 钟鑫, 洪督, 黄利平, 牛亚然, 郑学斌. Yb2O3改性硅黏结层的环境障涂层体系耐高温水氧腐蚀行为研究[J]. 无机材料学报, 2025, 40(4): 425-432. |
[3] | 殷杰, 耿佳毅, 王康龙, 陈忠明, 刘学建, 黄政仁. SiC陶瓷的3D打印成形与致密化新进展[J]. 无机材料学报, 2025, 40(3): 245-255. |
[4] | 穆浩洁, 张源江, 喻彬, 付秀梅, 周世斌, 李晓东. ZrO2掺杂Y2O3-MgO纳米复相陶瓷的制备及性能研究[J]. 无机材料学报, 2025, 40(3): 281-289. |
[5] | 范晓波, 祖梅, 杨向飞, 宋策, 陈晨, 王子, 罗文华, 程海峰. 质子调控型电化学离子突触研究进展[J]. 无机材料学报, 2025, 40(3): 256-270. |
[6] | 穆爽, 马沁, 张禹, 沈旭, 杨金山, 董绍明. Yb2Si2O7改性SiC/SiC复合材料的氧化行为研究[J]. 无机材料学报, 2025, 40(3): 323-328. |
[7] | 樊文楷, 杨潇, 李宏华, 李永, 李江涛. 无压烧结制备(Y0.2Gd0.2Er0.2Yb0.2Lu0.2)2Zr2O7高熵陶瓷及其高温抗CMAS腐蚀性能[J]. 无机材料学报, 2025, 40(2): 159-167. |
[8] | 叶君豪, 周真真, 胡辰, 王雁斌, 荆延秋, 李廷松, 程梓秋, 吴俊林, IVANOV Maxim, HRENIAK Dariusz, 李江. 共沉淀纳米粉体制备Yb:Sc2O3透明陶瓷的微结构与光学性能[J]. 无机材料学报, 2025, 40(2): 215-224. |
[9] | 孙树娟, 郑南南, 潘昊坤, 马猛, 陈俊, 黄秀兵. 单原子催化剂制备方法的研究进展[J]. 无机材料学报, 2025, 40(2): 113-127. |
[10] | 周帆, 田志林, 李斌. 热防护系统用碳化物超高温陶瓷抗烧蚀涂层研究进展[J]. 无机材料学报, 2025, 40(1): 1-16. |
[11] | 张婧慧, 陆晓彤, 毛海雁, 田亚州, 张山林. 烧结助剂对BaZr0.1Ce0.7Y0.2O3-δ电解质烧结行为及电导率的影响[J]. 无机材料学报, 2025, 40(1): 84-90. |
[12] | 鲍伟超, 郭晓杰, 辛晓婷, 彭湃, 王新刚, 刘吉轩, 张国军, 许钫钫. 在碳化物陶瓷中构筑金属原子层分相共生结构[J]. 无机材料学报, 2025, 40(1): 17-22. |
[13] | 王月月, 黄佳慧, 孔红星, 李怀珠, 姚晓红. 载银放射状介孔二氧化硅的制备及其在牙科树脂中的应用[J]. 无机材料学报, 2025, 40(1): 77-83. |
[14] | 王智祥, 陈莹, 逄清阳, 李鑫, 王根水. 碳酸锰掺杂氧化镁基陶瓷的烧结行为和介电性能[J]. 无机材料学报, 2025, 40(1): 97-103. |
[15] | 吕昕怿, 相恒阳, 曾海波. 长程有序助力钙钛矿QLED高性能化[J]. 无机材料学报, 2025, 40(1): 111-112. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||