• 综述 •
凌意瀚, 郭胜, 曹志强, 田云峰, 刘方升, 金芳军, 高源
收稿日期:
2025-03-24
修回日期:
2025-07-07
作者简介:
凌意瀚, 教授. E-mail: lyhyy@cumt.edu.cn
基金资助:
LING Yihan, GUO Sheng, CAO Zhiqiang, TIAN Yunfeng, LIU Fangsheng, JIN Fanjun, GAO Yuan
Received:
2025-03-24
Revised:
2025-07-07
About author:
LING Yihan, professor. E-mail: lyhyy@cumt.edu.cn
Supported by:
摘要: 固体氧化物电池(Solid oxide cell,SOC)因其燃料电池(SOFC)模式下的高效清洁发电能力和电解池(SOEC)模式下的优异制氢及储能潜力,近年来受到广泛关注。传统SOC电池通常采用石墨、碳粉等造孔剂制备多孔电极支撑体,存在孔隙无序分布、孔结构复杂的问题,从而产生较高的曲折因子,尤其在稀薄燃料或高电流密度条件下,容易引发浓差极化,限制了电池性能的进一步提升。为解决这一问题,近年来直孔结构的应用得到了广泛关注。该结构通过有序的孔道设计,有效促进了气体扩散与传输,减小了浓差极化现象,并提高了电极材料的浸渍效率及活性位点的利用率,从而显著提升了SOC的电化学性能。本文系统综述了直孔结构SOC的最新制备技术研究进展,详细阐述了相转化法、冷冻干燥法及海藻酸盐离子凝胶法等关键技术的成孔机理、工艺特点及其在平板式和管式SOC中的应用;深入分析了直孔结构在SOFC和SOEC两种模式下对氢气、碳氢燃料适应性和电解性能(包括传统水/CO2电解及燃料辅助电解)的提升作用与机制。尽管直孔结构在SOC中的应用展现了巨大的潜力,但目前关于这一制备技术的系统性综述仍较为缺乏。本文旨在总结直孔结构SOC的最新制备技术进展,分析其技术优势与存在的问题,并提出未来的发展方向,以期为相关研究提供参考。
中图分类号:
凌意瀚, 郭胜, 曹志强, 田云峰, 刘方升, 金芳军, 高源. 固体氧化物电池直孔电极结构的制备技术与性能的研究进展[J]. 无机材料学报, DOI: 10.15541/jim20250123.
LING Yihan, GUO Sheng, CAO Zhiqiang, TIAN Yunfeng, LIU Fangsheng, JIN Fanjun, GAO Yuan. Research Progress on Preparation Technologies and Performance of Straight-Pore Electrode Structures for Solid Oxide Cells[J]. Journal of Inorganic Materials, DOI: 10.15541/jim20250123.
[1] WEI B, LÜ Z, XU L L,et al. Enhancing Cr-tolerance ability of double perovskite cathodes through configuration entropy engineering. Journal of Inorganic Materials, 2025, DOI: 10.15541/jim20240542. [2] VINCHHI P, KHANDLA M, CHAUDHARY K,et al. Recent advances on electrolyte materials for SOFC: a review. Inorganic Chemistry Communications, 2023, 152: 110724. [3] ZHANG J, RICOTE S, HENDRIKSEN P V,et al. Advanced materials for thin-film solid oxide fuel cells: recent progress and challenges in boosting the device performance at low temperatures. Advanced Functional Materials, 2022, 32(22): 2111205. [4] JIANG Y H, SONG Y F, ZHANG L L,et al. Fluorination of BaZr0.1Ce0.7Y0.1Yb0.1O3 as electrolyte material for proton conducting solid oxide fuel cell. Journal of Inorganic Materials, 2025, DOI: 10.15541/jim20240535. [5] GÓMEZ S Y, HOTZA D. Current developments in reversible solid oxide fuel cells.Renewable and Sustainable Energy Reviews, 2016, 61: 155. [6] ZHANG K, WANG Y, ZHU T L,et al. LaNi0.6Fe0.4O3 cathode contact material: electrical conducting property manipulation and its effect on SOFC electrochemical performance. Journal of Inorganic Materials, 2024, 39(4): 367. [7] CHEN C S, ZHAN Z L, BAN X K,et al. Preparation and property of GDC-LSF dual-phase composite membrane with straight pores and sandwich structure. Journal of Inorganic Materials, 2021, 36(5): 497. [8] 夏美荣, 田丰源, 颜晓敏, 等. 造孔剂对流延法制备的阳极支撑SOFC性能的影响. 电源技术, 2022, 46(5): 492. [9] SHAO X, DONG D H, PARKINSON G,et al. A microchanneled ceramic membrane for highly efficient oxygen separation. Journal of Materials Chemistry A, 2013, 1(34): 9641. [10] YANG Y, LIU F S, HAN X,et al. Highly efficient and stable fuel-catalyzed dendritic microchannels for dilute ethanol fueled solid oxide fuel cells. Applied Energy, 2022, 307: 118222. [11] CHEN Y, BUNCH J, LI T S,et al. Novel functionally graded acicular electrode for solid oxide cells fabricated by the freeze-tape-casting process. Journal of Power Sources, 2012, 213: 93. [12] 张月, 马宁, 王亚利, 等. 利用海藻酸钠自组装凝胶法制备 YSZ 多孔陶瓷. 硅酸盐学报, 2016, 44(6): 785. [13] JAMIL S M, OTHMAN M H D, RAHMAN M A,et al. Recent fabrication techniques for micro-tubular solid oxide fuel cell support: a review. Journal of the European Ceramic Society, 2015, 35(1): 1. [14] CHAI R Y, ZHANG Z, WANG M L, et al. Preparation of Ceria based metal supported solid oxide fuel cells by direct assembly method. Journal of Inorganic Materials, DOI: 10.15541/jim20240498. [15] SOYDAN A M, YILDIZ O, DURĞUN A,et al. Production, performance and cost analysis of anode-supported NiO-YSZ micro-tubular SOFCs. International Journal of Hydrogen Energy, 2019, 44(57): 30339. [16] SHAO X, WANG Z T, XU S S,et al. Microchannel structure of ceramic membranes for oxygen separation. Journal of the European Ceramic Society, 2016, 36(13): 3193. [17] DONG D H, SHAO X, XIE K, et al. Microchanneled anode supports of solid oxide fuel cells. Electrochemistry Communications, 2014, 42: 64. [18] DONG D H, SHAO X, HU X,et al. Improved gas diffusion within microchanneled cathode supports of SOECs for steam electrolysis. International Journal of Hydrogen Energy, 2016, 41(44): 19829. [19] YU L B, WANG J J, YE Z M,et al. Electrochemical conversion of CO2 over microchanneled cathode supports of solid oxide electrolysis cells. Journal of CO2 Utilization, 2018, 26: 179. [20] WANG T P, TIAN Y Y, LI T P,et al. Essential microstructure of cathode functional layers of solid oxide electrolysis cells for CO2 electrolysis. Journal of CO2 Utilization, 2019, 32: 214. [21] WANG T P, WANG R Z, XIE X Y,et al. Robust direct hydrocarbon solid oxide fuel cells with exsolved anode nanocatalysts. ACS Applied Materials & Interfaces, 2022, 14(51): 56735. [22] FAN D J, GAO Y, LIU F S,et al. Autothermal reforming of methane over an integrated solid oxide fuel cell reactor for power and syngas co-generation. Journal of Power Sources, 2021, 513: 230536. [23] ZHENG G Z, CHEN T, ZHANG G J,et al. High strength bilayer finger-like ceramic supported reversible solid oxide cells via phase inversion tape-casting technology. Journal of Power Sources, 2024, 599: 234232. [24] JIN C,LIU J,LI L H,et al. Electrochemical properties analysis of tubular NiO-YSZ anode-supported SOFCs fabricated by the phase inversion method. Journal of Membrane Science, 2009, 341(1/2): 233. [25] LIU T, WANG Y, ZHANG Y X,et al. Steam electrolysis in a solid oxide electrolysis cell fabricated by the phase-inversion tape casting method. Electrochemistry Communications, 2015, 61: 106. [26] HUANG H, LIN J, WANG Y L,et al. Facile one-step forming of NiO and yttrium-stabilized zirconia composite anodes with straight open pores for planar solid oxide fuel cell using phase-inversion tape casting method. Journal of Power Sources, 2015, 274: 1114. [27] HE W, LIU J J, CHEN C S,et al. Oxygen permeation modeling for Zr0.84Y0.16O1.92-La0.8Sr0.2Cr0.5Fe0.5O3-asymmetric membrane made by phase-inversion. Journal of Membrane Science, 2015, 491: 90. [28] DING R G, CUI S S, LIN J,et al. Improving the water splitting performance of nickel electrodes by optimizing their pore structure using a phase inversion method. Catalysis Science & Technology, 2017, 7(14): 3056. [29] SHI N, XIE Y, YANG Y,et al. Infiltrated Ni0.08Co0.02CeO2-x@Ni0.8Co0.2 catalysts for a finger-like anode in direct methane-fueled solid oxide fuel cells. ACS Applied Materials & Interfaces, 2021, 13(4): 4943. [30] ZHANG H L, CHEN T, HUANG Z H,et al. A cathode-supported solid oxide fuel cell prepared by the phase-inversion tape casting and impregnating method. International Journal of Hydrogen Energy, 2022, 47(43): 18810. [31] SHA Y H, LING Y H, YANG Y,et al. A finger-like anode with infiltrated Ni0.1Ce0.9O2-δ catalyst using new phase inversion combined tape-casting technology for optimized dry reforming of methane. Ceramics International, 2023, 49(17): 29155. [32] PAN Y X, PEI K, ZHOU Y C,et al. A straight, open and macro-porous fuel electrode-supported protonic ceramic electrochemical cell. Journal of Materials Chemistry A, 2021, 9(17): 10789. [33] DEVILLE S, SAIZ E, TOMSIA A P.Ice-templated porous alumina structures.Acta Materialia, 2007, 55(6): 1965. [34] SUN H B, CHEN Y, CHEN F L,et al. High-performance solid oxide fuel cells based on a thin La0.8Sr0.2Ga0.8Mg0.2O3-δ electrolyte membrane supported by a nickel-based anode of unique architecture. Journal of Power Sources, 2016, 301: 199. [35] LIU R P, XU T T, WANG C A.A review of fabrication strategies and applications of porous ceramics prepared by freeze-casting method.Ceramics International, 2016, 42(2): 2907. [36] GAUDILLERE C, SERRA J M.Freeze-casting: fabrication of highly porous and hierarchical ceramic supports for energy applications.Bulletin of the Spanish Society of Ceramics and Glass, 2016, 55(2): 45. [37] DU Y H, HEDAYAT N, PANTHI D, et al. Freeze-casting for the fabrication of solid oxide fuel cells: a review. Materialia, 2018, 1: 198. [38] BUNCH J, CHEN Y, CHEN F L, et al. Freeze‐tape casting for the design of anode‐delivery layer in solid oxide fuel cells//SINGH P, BANSAL N P, HALBIG M, et al. Advances in Solid Oxide Fuel Cells VIII. Hoboken: Wiley, 2012: 13-21. [39] CHEN Y, LIU Q, YANG Z B,et al. High performance low temperature solid oxide fuel cells with novel electrode architecture. RSC Advances, 2012, 2(32):12118. [40] SAMMES N M, DU Y, BOVE R.Design and fabrication of a 100 W anode supported micro-tubular SOFC stack.Journal of Power Sources, 2005, 145(2): 428. [41] HEDAYAT N, DU Y H, ILKHANI H,et al. Review on fabrication techniques for porous electrodes of solid oxide fuel cells by sacrificial template methods. Renewable and Sustainable Energy Reviews, 2017, 77: 1221. [42] HEDAYAT N, DU Y H, ILKHANI H.Pyrolyzable pore-formers for the porous-electrode formation in solid oxide fuel cells: a review.?Ceramics International, 2018, 44(5): 4561. [43] NISHIHORA R K, RACHADEL P L, QUADRI M G N,et al. Manufacturing porous ceramic materials by tape casting-a review. Journal of the European Ceramic Society, 2018, 38(4): 988. [44] WEI P, SOFIE S, ZHANG Q,et al. Metal supported solid oxide fuel cell by freeze tape casting, ECS Transactions, 2011, 35(1): 379. [45] HU L F, WANG C A, HUANG Y,et al. Control of pore channel size during freeze casting of porous YSZ ceramics with unidirectionally aligned channels using different freezing temperatures. Journal of the European Ceramic Society, 2010, 30(16): 3389. [46] CHEN Y, LIN Y, ZHANG Y X,et al. Low temperature solid oxide fuel cells with hierarchically porous cathode nano-network. Nano Energy, 2014, 8: 25. [47] XUE W J, SUN Y, HUANG Y,et al. Preparation and properties of porous alumina with highly ordered and unidirectional oriented pores by a self-organization process. Journal of the American Ceramic Society, 2011, 94(7): 1978. [48] LONG M L, MA N, YANG J L.Preparation of unidirectional aligned alumina ceramics with micron pores.Journal of the Chinese Chemical Society, 2014, 42(3): 261. [49] ZHANG Y, MA N, WANG L Y,et al. Preparation of unidirectional porous yttria-stabilized zirconia ceramics by an alginate self-assemble method. Journal of the Chinese Ceramic Society, 2016, 44(6): 785. [50] 郭祥, 田彦婷, 吴萍萍, 等. 直通孔陶瓷在固体氧化物燃料电池中的应用. 硅酸盐学报, 2020, 48(6): 887. [51] CHANG H, YAN J, CHEN H L,et al. Preparation of thin electrolyte film via dry pressing/heating/quenching/calcining for electrolyte-supported SOFCs. Ceramics International, 2019, 45(8): 9866. [52] 吴萍萍, 田彦婷, 郭祥, 等. 直孔阳极支撑体及阳极功能层的制备方法及其单电池性能. 硅酸盐学报, 2021, 49(7): 1493. [53] ELJAOUHARI A A, MULLER R, KELLERMEIER M,et al. New anisotropic ceramic membranes from chemically fixed dissipative structures. Langmuir, 2006, 22(26): 11353. [54] SUZUKI T, YAMAGUCHI T, FUJISHIRO Y,et al. Improvement of SOFC performance using a microtubular, anode-supported SOFC. Journal of The Electrochemical Society, 2006, 153(5): A925. [55] YANG N T, TAN X Y, MA Z F.A phase inversion/sintering process to fabricate nickel/yttria-stabilized zirconia hollow fibers as the anode support for micro-tubular solid oxide fuel cells.Journal of Power Sources, 2008, 183(1): 14. [56] LAWLOR V, GRIESSER S, BUCHINGER G,et al. Review of the micro-tubular solid oxide fuel cell: Part I. Stack design issues and research activities. Journal of Power Sources, 2009, 193(2): 387. [57] RAHMAN A M, OTHMAN M H D, FANSURI H,et al. Development of high-performance anode/electrolyte/cathode micro-tubular solid oxide fuel cell via phase inversion-based co-extrusion/co-sintering technique. Journal of Power Sources, 2020, 467: 228345. [58] LU X K, LI T, BERTEI A,et al. The application of hierarchical structures in energy devices: new insights into the design of solid oxide fuel cells with enhanced mass transport. Energy & Environmental Science, 2018, 11(9): 2390. [59] LI T, LU X K, RABUNI M F,et al. High-performance fuel cell designed for coking-resistance and efficient conversion of waste methane to electrical energy. Energy & Environmental Science, 2020, 13(6): 1879. [60] JARDIEL T, LEVENFELD B, JIMENEZ R,et al. Fabrication of 8-YSZ thin-wall tubes by powder extrusion moulding for SOFC electrolytes. Ceramics International, 2009, 35(6): 2329. [61] MENG X X, YAN W, YANG N T,et al. Highly stable microtubular solid oxide fuel cells based on integrated electrolyte/anode hollow fibers. Journal of Power Sources, 2015, 275: 362. [62] HOU M Y, ZHU F, LIU Y,et al. A high-performance fuel electrode-supported tubular protonic ceramic electrochemical cell. Journal of the European Ceramic Society, 2023, 43(14): 6200. [63] ZHANG L, HE H Q, KWEK W R,et al. Fabrication and characterization of anode‐supported tubular solid‐oxide fuel cells by slip casting and dip coating techniques. Journal of the American Ceramic Society, 2009, 92(2): 302. [64] CHEN C C, DONG Y, LI L,et al. Electrochemical properties of micro-tubular intermediate temperature solid oxide fuel cell with novel asymmetric structure based on BaZr0.1Ce0.7Y0.1Yb0.1O3-δ proton conducting electrolyte. International Journal of Hydrogen Energy, 2019, 44(31): 16887. [65] PAN Y X, ZHANG H, XU K,et al. A high-performance and durable direct NH3 tubular protonic ceramic fuel cell integrated with an internal catalyst layer. Applied Catalysis, B, 2022, 306: 121071. [66] YANG C H, JIN C, CHEN F L.Performances of micro-tubular solid oxide cell with novel asymmetric porous hydrogen electrode.Electrochimica Acta, 2010, 56(1): 80. [67] LIN Q Y, LIN J, LIU T,et al. Solid oxide fuel cells supported on cathodes with large straight open pores and catalyst-decorated surfaces. Solid State Ionics, 2018, 323: 130. [68] CHEN X, WANG J T, YU N,et al. A robust direct-propane solid oxide fuel cell with hierarchically oriented full ceramic anode consisting with in-situ exsolved metallic nano-catalysts. Journal of Membrane Science, 2023, 677: 121637. [69] CAO J W, LI Y F, ZHENG Y,et al. A novel solid oxide electrolysis cell with micro-/nano channel anode for electrolysis at ultra‐high current density over 5 A cm-2. Advanced Energy Materials, 2022, 12(28): 2200899. [70] LIU F S, CHEN Z P, ZHOU H H,et al. Highly efficient CH4-assisted CO2 electrolysis for syngas production in a quasi-symmetric Ni-ceramic electrolyzer. Journal of Power Sources, 2024, 609: 234703. [71] LIU F S, WANG T P, LI J J,et al. Elevated-temperature bio-ethanol-assisted water electrolysis for efficient hydrogen production. Chemical Engineering Journal, 2022, 434: 134699. |
[1] | 朱文杰, 唐璐, 陆继长, 刘江平, 罗永明. 钙钛矿型氧化物催化氧化挥发性有机化合物的研究进展[J]. 无机材料学报, 2025, 40(7): 735-746. |
[2] | 胡智超, 杨鸿宇, 杨鸿程, 孙成礼, 杨俊, 李恩竹. P-V-L键理论在微波介质陶瓷性能调控中的应用[J]. 无机材料学报, 2025, 40(6): 609-626. |
[3] | 吴琼, 沈炳林, 张茂华, 姚方周, 邢志鹏, 王轲. 铅基织构压电陶瓷研究进展[J]. 无机材料学报, 2025, 40(6): 563-574. |
[4] | 张碧辉, 刘小强, 陈湘明. Ruddlesden-Popper结构杂化非常规铁电体的研究进展[J]. 无机材料学报, 2025, 40(6): 587-608. |
[5] | 吴杰, 杨帅, 王明文, 李景雷, 李纯纯, 李飞. 铅基织构压电陶瓷的发展历程、现状与挑战[J]. 无机材料学报, 2025, 40(6): 575-586. |
[6] | 姜昆, 李乐天, 郑木鹏, 胡永明, 潘勤学, 吴超峰, 王轲. PZT陶瓷的低温烧结研究进展[J]. 无机材料学报, 2025, 40(6): 627-638. |
[7] | 万俊池, 杜路路, 张永上, 李琳, 刘建德, 张林森. Na4FexP4O12+x/C钠离子电池正极材料的结构演变及其电化学性能[J]. 无机材料学报, 2025, 40(5): 497-503. |
[8] | 薛柯, 蔡长焜, 谢满意, 李舒婷, 安胜利. 固体氧化物燃料电池Pr1+xBa1-xFe2O5+δ阴极材料的制备及电化学性能研究[J]. 无机材料学报, 2025, 40(4): 363-371. |
[9] | 田睿智, 兰正义, 殷杰, 郝南京, 陈航榕, 马明. 基于微流控技术的纳米无机生物材料制备: 原理及其研究进展[J]. 无机材料学报, 2025, 40(4): 337-347. |
[10] | 张继国, 吴田, 赵旭, 杨钒, 夏天, 孙士恩. 钠离子电池正极材料循环稳定性提升策略及产业化进程[J]. 无机材料学报, 2025, 40(4): 348-362. |
[11] | 殷杰, 耿佳毅, 王康龙, 陈忠明, 刘学建, 黄政仁. SiC陶瓷的3D打印成形与致密化新进展[J]. 无机材料学报, 2025, 40(3): 245-255. |
[12] | 谌广昌, 段小明, 朱金荣, 龚情, 蔡德龙, 李宇航, 杨东雷, 陈彪, 李新民, 邓旭东, 余瑾, 刘博雅, 何培刚, 贾德昌, 周玉. 直升机特定结构先进陶瓷材料研究进展与应用展望[J]. 无机材料学报, 2025, 40(3): 225-244. |
[13] | 范晓波, 祖梅, 杨向飞, 宋策, 陈晨, 王子, 罗文华, 程海峰. 质子调控型电化学离子突触研究进展[J]. 无机材料学报, 2025, 40(3): 256-270. |
[14] | 海热古·吐逊, 郭乐, 丁嘉仪, 周嘉琪, 张学良, 努尔尼沙·阿力甫. 上转换荧光探针辅助的光学成像技术在肿瘤显影中的应用研究进展[J]. 无机材料学报, 2025, 40(2): 145-158. |
[15] | 孙树娟, 郑南南, 潘昊坤, 马猛, 陈俊, 黄秀兵. 单原子催化剂制备方法的研究进展[J]. 无机材料学报, 2025, 40(2): 113-127. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||