• 综述 •
艾敏慧1, 雷波1,2,3
收稿日期:
2024-12-27
修回日期:
2025-02-08
作者简介:
艾敏慧(2000-),女,硕士研究生. E-mail: Aiminhui1023@stu.xjtu.edu.cn
基金资助:
AI Minhui1, LEI Bo1,2,3
Received:
2024-12-27
Revised:
2025-02-08
About author:
AI Minhui(2000-), Female, Master candidate. E-mail: Aiminhui1023@stu.xjtu.edu.cn
Supported by:
摘要: 生物活性玻璃(BG)材料是一类重要的非晶态无机医用材料, 在硬组织修复领域临床应用多年, 表现出独特的组织修复活性。近年来研究发现, 生物活性玻璃在促进软组织修复方面也表现出有效的修复活性, 具有重要的应用价值。与传统的 BG 相比, 微纳米生物活性玻璃(MNBG)具有独特的微纳米结构, 不仅保留了其优良的化学组成, 而且具有更大的比表面积和更高的反应活性, 在促进血管化皮肤修复再生方面表现出重要的应用潜力。本文将重点讨论 MNBG 在调控血管化及皮肤再生方面的研究进展。本文主要内容包括 MBGN 促进血管化的能力, 调控免疫细胞的功能, 以及其抗氧化、抗炎和抗菌性能, 这些特性使得 MNBG 能够有效刺激血管形成, 同时降低炎症反应, 抑制细菌感染, 从而促进伤口愈合和组织修复。本文重点总结了 MNBG 在皮肤创面血管化和修复方面的重要研究进展, 并对 MNBG 目前皮肤创面修复应用中存在的问题和未来的研究方向提出相应的建议, 以期推动 MNBG 在皮肤修复领域中的应用转化。
中图分类号:
艾敏慧, 雷波. 微纳米生物活性玻璃:功能化设计与血管化皮肤再生[J]. 无机材料学报, DOI: 10.15541/jim20240541.
AI Minhui, LEI Bo. Micro-nanoscale Bioactive Glass: Functionalized Design and Angiogenic Skin Regeneration[J]. Journal of Inorganic Materials, DOI: 10.15541/jim20240541.
[1] ZHENG K, TORRE E, BARI A,et al. Antioxidant mesoporous Ce-doped bioactive glass nanoparticles with anti-inflammatory and pro-osteogenic activities. Materials Today Bio, 2020, 5: 100041. [2] SKALLEVOLD HE.; ROKAYA D.; KHURSHID Z.,et al. Bioactive glass applications in dentistry. International Journal of Materials Science, 2019, 20: 5960. [3] MAJUMDAR S, GUPTA S, KRISHNAMURTHY S.Multifarious applications of bioactive glasses in soft tissue engineering.Biomaterials Science, 2021, 9: 8111. [4] HONG Z, REIS R L, MANO J F.Preparation andin vitro characterization of scaffolds of poly(l-lactic acid) containing bioactive glass ceramic nanoparticles. Acta Biomaterialia, 2008, 4: 1297. [5] REZWAN K, CHEN Q Z, BLAKER J J,et al. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials, 2006, 27: 3413. [6] HU Q, JIANG W, LI Y,et al. The effects of morphology on physicochemical properties, bioactivity and biocompatibility of micro-/nano-bioactive glasses. Advanced Powder Technology, 2018, 29: 1812. [7] HUANG X L, TENG X, CHEN D,et al. The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials, 2010, 31: 438. [8] LI H, LI D, WANG X,et al. Progress in biomaterials-enhanced vascularization by modulating physical properties. ACS Biomaterials Science & Engineering, 2025, 11: 33. [9] ALOUI C, PRIGENT A, SUT C,et al. The signaling role of CD40 ligand in platelet biology and in platelet component transfusion. International Journal of Molecular Sciences, 2014, 22342. [10] CHAKRABARTI S, RIZVI M, MORIN K,et al. The role of CD40L and VEGF in the modulation of angiogenesis and inflammation. Vascular Pharmacology, 2010, 53: 130. [11] PHILLIPSON M, KUBES P.The healing power of neutrophils.Trends in Immunology, 2019, 40: 635. [12] ZHENG K, NIU W, LEI B,et al. Immunomodulatory bioactive glasses for tissue regeneration. Acta Biomaterialia, 2021, 133: 168. [13] MUGHAL A, GILLANI S M H, AHMED S,et al. 3D-printed polyether-ether ketone/carboxymethyl cellulose scaffolds coated with Zn-Mn doped mesoporous bioactive glass nanoparticles. Journal of the Mechanical Behavior of Biomedical Materials, 2024, 156: 106581. [14] POLO-MONTALVO A, CASARRUBIOS L, SERRANO MC,et al. Effective actions of ion release from mesoporous bioactive glass and macrophage mediators on the differentiation of osteoprogenitor and endothelial progenitor cells. Pharmaceutics. 2021; 13(8):1152. [15] VARMETTE E A, NOWALK J R, FLICK L M,et al. Abrogation of the inflammatory response in LPS-stimulated RAW 264.7 murine macrophages by Zn- and Cu-doped bioactive sol-gel glasses. Journal of Biomedical Materials Research Part A, 2009, 90A: 317. [16] WANG L, WEI X, WANG Y.Promoting Angiogenesis Using Immune Cells for Tissue-Engineered Vascular Grafts.Annals of Biomedical Engineering. 2023, 51: 660. [17] SOZZANI S, RUSNATI M, RIBOLDI E,et al. Dendritic cell-endothelial cell cross-talk in angiogenesis. Trends in Immunology, 2007, 28: 385. [18] ZARUBOVA J, HASANI-SADRABADI M M, ARDEHALI R,et al. Immunoengineering strategies to enhance vascularization and tissue regeneration. Advanced Drug Delivery Reviews, 2022, 184: 114233. [19] LI R, CLARK A E, HENCH L L.An investigation of bioactive glass powders by sol-gel processing.Journal of Applied Biomaterials, 1991, 2: 231. [20] SOLANKI A K., LALI F V., AUTEFAGE H,et al. Bioactive glasses and electrospun composites that release cobalt to stimulate the HIF pathway for wound healing applications. Biomaterials Research. 2021, 25:1. [21] JIANG Y, LI Y, LI J,et al. A Mussel-inspired extracellular matrix-mimicking composite scaffold for diabetic wound healing. ACS Applied Bio Materials, 2020, 3: 4052. [22] LIN C, MAO C, ZHANG J J,et al. Healing effect of bioactive glass ointment on full-thickness skin wounds. Biomedical Materials, 2012, 7: 045017. [23] LI H, CHANG J.Stimulation of proangiogenesis by calcium silicate bioactive ceramic.Acta Biomaterialia, 2013, 9: 5379. [24] LU Y, YANG Y, XIAO L,et al. Autocrine and paracrine effects of vascular endothelial cells promote cutaneous wound healing. BioMed Research International. 2021, 10: 6695663. [25] JIN L, LONG Y, ZHANG Q,et al. MiRNAs regulate cell communication in osteogenesis-angiogenesis coupling during bone regeneration. Molecular Biology Reports. 2023, 50: 8715. [26] HOPPE A, GÜLDAL N S, BOCCACCINI A R. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics.Biomaterials, 2011, 32: 2757 [27] WU C T, ZHOU Y H, XU M C,et al. Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Biomaterials, 2013, 34: 422. [28] WU C T, ZHOU Y H, FAN W,et al. Hypoxia-mimicking mesoporous bioactive glass scaffolds with controllable cobalt ion release for bone tissue engineering. Biomaterials, 2012, 33: 2076. [29] PATEL U, MOSS R M, HOSSAIN K M Z,et al. Structural and physico-chemical analysis of calcium/strontium substituted, near-invert phosphate based glasses for biomedical applications. Acta Biomaterialia, 2017, 60: 109. [30] DAY R M, BOCCACCINI A R, SHUREY S,et al. Assessment of polyglycolic acid mesh and bioactive glass for soft-tissue engineering scaffolds. Biomaterials. 2004, 25: 5857. [31] BOCCARDI E, CIRALDO F E, BOCCACCINI A R.Bioactive glass-ceramic scaffolds: Processing and properties.Mrs Bulletin, 2017, 42: 226. [32] LEU A, LEACH J K.Proangiogenic potential of a collagen/bioactive glass substrate.Pharmaceutical Research, 2008, 25: 1222. [33] LIN Y, XIAO W, LIU X,et al. Long-term bone regeneration, mineralization and angiogenesis in rat calvarial defects implanted with strong porous bioactive glass (13-93) scaffolds. Journal of Non-Crystalline Solids. 2016, 432: 120. [34] LI Y, CHEN L, CHEN X,et al. High phosphate content in bioactive glasses promotes osteogenesis in vitro and in vivo. Dental Materials, 2021, 37: 272. [35] GERHARDT L C, WIDDOWS K L, EROL M M,et al. The pro-angiogenic properties of multi-functional bioactive glass composite scaffolds. Biomaterials, 2011, 32: 4096. [36] DETSCH R, STOOR P, GRÜNEWALD A,et al. Increase in VEGF secretion from human fibroblast cells by bioactive glass S53P4 to stimulate angiogenesis in bone. Journal of Biomedical Materials Research Part A, 2014, 102: 4055. [37] ZHU Y, MA Z, KONG L,et al. Modulation of macrophages by bioactive glass/sodium alginate hydrogel is crucial in skin regeneration enhancement. Biomaterials. 2020, 256: 120216. [38] SINGER B D, CHANDEL N S.Immunometabolism of pro-repair cells.The Journal of Clinical Investigation, 2019, 129: 2597. [39] MARTIN P, LEIBOVICH S J.Inflammatory cells during wound repair: the good, the bad and the ugly.Trends Cell Biology, 2005, 15: 599. [40] AHMADI A R, CHICCO M, HUANG J, et al. Stem cells in burn wound healing: A systematic review of the literature. Burns. 2019, 45: 1014. [41] WANG S, YANG J, ZHAO G, et al. Current applications of platelet gels in wound healing: a review. Wound Repair and Regeneration. 2021, 29: 370. [42] SUMMERS C, RANKIN S M, CONDLIFFE A M,et al. Neutrophil kinetics in health and disease. Trends in Immunology, 2010, 31: 318. [43] BURN G L, FOTI A, MARSMAN G,et al. The neutrophil. Immunity, 2021, 54: 1377. [44] BASHIR S, SHARMA Y, ELAHI A,et al. Macrophage polarization: the link between inflammation and related diseases. Inflammatory Research, 2016, 65: 1. [45] YUNNA C, MENGRU H, LEI W,et al. Macrophage M1/M2 polarization. European Journal of Pharmacology. 2020, 877: 173090. [46] SPILLER K L, ANFANG R R, SPILLER K J,et al. The role of macrophage phenotype in vascularization of tissue engineering scaffolds. Biomaterials, 2014, 35: 4477. [47] GRANEY P L, BEN-SHAUL S, LANDAU S,et al. Macrophages of diverse phenotypes drive vascularization of engineered tissues. Science Advances, 2020, 6: 6391. [48] KREIMENDAHL F, MARQUARDT Y, APEL C,et al. Macrophages significantly enhance wound healing in a vascularized skin model. Journal of Biomedical Materials Research Part A. 2019, 107: 1340. [49] YANG M, MA C, LIU S,et al. HIF-dependent induction of adenosine receptor A2b skews human dendritic cells to a Th2-stimulating phenotype under hypoxia. Immunology & Cell Biology, 2010, 88: 165. [50] BAI WK, ZHANG W, HU B.Vascular endothelial growth factor suppresses dendritic cells function of human prostate cancer.OncoTargets and Therapy, 2018, 11: 1267. [51] SCHUHLADEN K, STICH L, SCHMIDT J, et al. Cu, Zn doped borate bioactive glasses: antibacterial efficacy and dose-dependent in vitro modulation of murine dendritic cells. Biomaterials Science, 2020, 8: 2143. [52] KWEE B J, BUDINA E, NAJIBI A J,et al. CD4 T-cells regulate angiogenesis and myogenesis. Biomaterials, 2018, 178: 109. [53] RAUSCHENBERGER T, SCHMITT V, AZEEM M, et al. T cells control chemokine secretion by keratinocytes. Frontiers in Immunology. 2019, 10: 1917. [54] GROME H N, BARNETT L, HAGAR C C,et al. Association of T cell and macrophage activation with arterial vascular health in HIV. AIDS Research and Human Retroviruses. 2016, 33: 181. [55] KIM E-J, BU S-Y, SUNG M-K,et al. Analysis of antioxidant and anti-inflammatory activity of silicon in murine macrophages. Biological Trace Element Research, 2013, 156: 329. [56] LIU W, CHEN M, LUO M,et al. Bioactive glass ions hydrogels with antiinflammation antioxidant capacity for treating inflammation-related diseases. Materials & Design, 2023, 227: 111669. [57] NIELSEN F H.A novel silicon complex is as effective as sodium metasilicate in enhancing the collagen-induced inflammatory response of silicon-deprived rats.Journal of Trace Elements in Medicine and Biology, 2008, 22: 39. [58] BIRBEN E, SAHINER U M, SACKESEN C,et al. Oxidative stress and antioxidant defense. World Allergy Organization Journal, 2012, : 9. [59] XU W, QIN Z, XU R,et al. Injectable, pro-osteogenic and antioxidant composite microspheres composed of cerium-containing mesoporous bioactive glass and chitosan for bone regeneration applications. Ceramics International, 2023, 49: 25757. [60] ZHU Y, ZHANG X, CHANG G,et al. Bioactive glass in tissue regeneration: unveiling recent advances in regenerative strategies and applications. Advanced Materials. 2025, 37: 2312964. [61] LOSI P, BRIGANTI E, ERRICO C,et al. Fibrin-based scaffold incorporating VEGF- and bFGF-loaded nanoparticles stimulates wound healing in diabetic mice. Acta Biomaterialia, 2013, 9: 7814. [62] FRANK S, HÜBNER G, BREIER G,et al. Regulation of vascular endothelial growth factor expression in cultured keratinocytes. Journal of Biological Chemistry, 1995, 270: 12607. [63] EL-FIQI A, ALLAM R, KIM H-W.Antioxidant cerium ions-containing mesoporous bioactive glass ultrasmall nanoparticles: structural, physico-chemical, catalase-mimic and biological properties.Colloids and Surfaces B: Biointerfaces. 2021, 206: 111932. [64] EBERSBERGER A, SCHAIBLE H-G.Do cytokines play a role in the transition from acute to chronic musculoskeletal pain? Pharmacological Research. 2025, 212: 107585. [65] MAJUMDAR S, HIRA S K, TRIPATHI H,et al. Synthesis and characterization of barium-doped bioactive glass with potential anti-inflammatory activity. Ceramics International, 2021, 47: 7143. [66] JUNG H, LEE H, KIM D,et al. Differential regional vulnerability of the brain to mild neuroinflammation induced by systemic LPS treatment in mice. Journal of Inflammation Research, 2022, 15: 3053. [67] DUAN Y, ZHENG K, HU W,et al. Anti-inflammatory cerium-containing nano-scaled mesoporous bioactive glass for promoting regenerative capability of dental pulp cells. International Endodontic Journal, 2024, 57: 727. [68] KANG Y, LIU K, CHEN Z,et al. Healing with precision: a multi-functional hydrogel-bioactive glass dressing boosts infected wound recovery and enhances neurogenesis in the wound bed. Journal of Controlled Release, 2024, 370: 210. [69] ZHANG D, LEPPÄRANTA O, MUNUKKA E,et al. Antibacterial effects and dissolution behavior of six bioactive glasses. Journal of Biomedical Materials Research Part A, 2010, 93A: 475. [70] ZEHNDER M, WALTIMO T, SENER B,et al. Dentin enhances the effectiveness of bioactive glass S53P4 against a strain of enterococcus faecalis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2006, 101: 530. [71] MORTAZAVI V, NAHRKHALAJI M M, FATHI M H,et al. Antibacterial effects of sol-gel-derived bioactive glass nanoparticle on aerobic bacteria. Journal of Biomedical Materials Research Part A, 2010, 94A: 160. [72] HU G, XIAO L, TONG P,et al. Antibacterial hemostatic dressings with nanoporous bioglass containing silver. International Journal Nanomedicine, 2012;7: 2613. [73] HAN X, CHEN Y, JIANG Q,et al. Novel bioactive glass-modified hybrid composite resin: mechanical properties, biocompatibility, and antibacterial and remineralizing activity. Frontiers in Bioengineering and Biotechnology, 2021, 9: 661734. [74] ÖZARSLAN A C.Preparation of biosilica glass-based porous scaffolds using various elements (Mg-Zn, Mg-Cu, and Sr-Cu) as bioactive glass co-dopants:in vitro bioactivity and biocompatibility behaviors. Journal of Materials Research, 2023, 38: 3874. [75] KURTULDU F, KAŇKOVÁ H, BELTRÁN A M, et al. Anti-inflammatory and antibacterial activities of cerium-containing mesoporous bioactive glass nanoparticles for drug-free biomedical applications. Materials Today Bio, 2021, 12: 100150. [76] POP O L, MESAROS A, VODNAR D C,et al. Cerium oxide nanoparticles and their efficient antibacterial application in vitro against gram-positive and gram-negative pathogens. Nanomaterials, 2020, 10: 1614. [77] MUTLU N, KURTULDU F, UNALAN I,et al. Effect of Zn and Ga doping on bioactivity, degradation, and antibacterial properties of borate 1393-B3 bioactive glass. Ceramics International, 2022, 48: 16404. [78] LI T, WANG Y, LEI B.Photothermal-antibacterial bioactive noncrystalline nanosystem promotes infected wound tissue regeneration through thermo-ions activation.Chemical Engineering Journal, 2024, 491: 151799. |
[1] | 殷杰, 耿佳毅, 王康龙, 陈忠明, 刘学建, 黄政仁. SiC陶瓷的3D打印成形与致密化新进展[J]. 无机材料学报, 2025, 40(3): 245-255. |
[2] | 谌广昌, 段小明, 朱金荣, 龚情, 蔡德龙, 李宇航, 杨东雷, 陈彪, 李新民, 邓旭东, 余瑾, 刘博雅, 何培刚, 贾德昌, 周玉. 直升机特定结构先进陶瓷材料研究进展与应用展望[J]. 无机材料学报, 2025, 40(3): 225-244. |
[3] | 范晓波, 祖梅, 杨向飞, 宋策, 陈晨, 王子, 罗文华, 程海峰. 质子调控型电化学离子突触研究进展[J]. 无机材料学报, 2025, 40(3): 256-270. |
[4] | 海热古·吐逊, 郭乐, 丁嘉仪, 周嘉琪, 张学良, 努尔尼沙·阿力甫. 上转换荧光探针辅助的光学成像技术在肿瘤显影中的应用研究进展[J]. 无机材料学报, 2025, 40(2): 145-158. |
[5] | 孙树娟, 郑南南, 潘昊坤, 马猛, 陈俊, 黄秀兵. 单原子催化剂制备方法的研究进展[J]. 无机材料学报, 2025, 40(2): 113-127. |
[6] | 陶桂龙, 支国伟, 罗添友, 欧阳佩东, 衣新燕, 李国强. 空腔型薄膜体声波滤波器的关键技术进展[J]. 无机材料学报, 2025, 40(2): 128-144. |
[7] | 周帆, 田志林, 李斌. 热防护系统用碳化物超高温陶瓷抗烧蚀涂层研究进展[J]. 无机材料学报, 2025, 40(1): 1-16. |
[8] | 魏相霞, 张晓飞, 徐凯龙, 陈张伟. 增材制造柔性压电材料的现状与展望[J]. 无机材料学报, 2024, 39(9): 965-978. |
[9] | 杨鑫, 韩春秋, 曹玥晗, 贺桢, 周莹. 金属氧化物电催化硝酸盐还原合成氨研究进展[J]. 无机材料学报, 2024, 39(9): 979-991. |
[10] | 刘鹏东, 王桢, 刘永锋, 温广武. 硅泥在锂离子电池中的应用研究进展[J]. 无机材料学报, 2024, 39(9): 992-1004. |
[11] | 黄洁, 汪刘应, 王滨, 刘顾, 王伟超, 葛超群. 基于微纳结构设计的电磁性能调控研究进展[J]. 无机材料学报, 2024, 39(8): 853-870. |
[12] | 陈乾, 苏海军, 姜浩, 申仲琳, 余明辉, 张卓. 超高温氧化物陶瓷激光增材制造及组织性能调控研究进展[J]. 无机材料学报, 2024, 39(7): 741-753. |
[13] | 王伟明, 王为得, 粟毅, 马青松, 姚冬旭, 曾宇平. 以非氧化物为烧结助剂制备高导热氮化硅陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 634-646. |
[14] | 蔡飞燕, 倪德伟, 董绍明. 高熵碳化物超高温陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 591-608. |
[15] | 吴晓晨, 郑瑞晓, 李露, 马浩林, 赵培航, 马朝利. SiCf/SiC陶瓷基复合材料高温环境损伤原位监测研究进展[J]. 无机材料学报, 2024, 39(6): 609-622. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||