• 综述 •
张洪健1, 赵梓壹1,2, 吴成铁1,2
收稿日期:
2025-01-02
修回日期:
2025-02-07
作者简介:
张洪健(1996-),男,博士. E-mail: zhanghongjian@mail.sic.ac.cn
基金资助:
ZHANG Hongjian1, ZHAO Ziyi1,2, WU Chengtie1,2
Received:
2025-01-02
Revised:
2025-02-07
About author:
ZHANG Hongjian (1996-),male,PhD. E-mail: zhanghongjian@mail.sic.ac.cn
Supported by:
摘要: 基于神经在组织再生中的关键作用,开发具有神经诱导活性的组织工程支架引起了研究者们的广泛关注。近年来,无机生物材料因具有高度可控的化学组成、微/纳拓扑结构及优异的理化性能,在调控神经细胞功能及神经化组织再生中得到广泛应用。本文首先介绍了常用无机生物材料,主要包括生物陶瓷材料和电活性材料,并阐述了无机生物材料通过调控细胞行为、调节免疫微环境和构建电活性微环境等途径对神经细胞活性及生物学功能的增强作用,重点阐述了无机生物材料在脊髓、周围神经、皮肤、骨骼肌、海绵体等组织神经化再生中的最新研究进展,最后讨论了无机生物材料在调控神经细胞活性及神经化组织再生中存在的难题及未来发展前景。
中图分类号:
张洪健, 赵梓壹, 吴成铁. 无机生物材料调控神经细胞功能及神经化组织再生的研究进展[J]. 无机材料学报, DOI: 10.15541/jim20250001.
ZHANG Hongjian, ZHAO Ziyi, WU Chengtie. Inorganic Biomaterials on Regulating Neural Cell and Innervated Tissue Regeneration: A Review[J]. Journal of Inorganic Materials, DOI: 10.15541/jim20250001.
[1] WAN Q-Q, QIN W-P, MA Y-X,et al. Crosstalk between bone and nerves within bone. Advanced Science, 2021, 8(7): 2003390. [2] WANG X D, LI S Y, ZHANG S J, et al. The neural system regulates bone homeostasis via mesenchymal stem cells: a translational approach. Theranostics, 2020, 10(11): 4839. [3] ELEFTERIOU F.Impact of the autonomic nervous system on the skeleton.Physiological Reviews, 2018, 98(3): 1083. [4] BROKESH A M, GAHARWAR A K.Inorganic biomaterials for regenerative medicine.ACS Applied Materials & Interfaces, 2020, 12(5): 5319. [5] PEI Z, LEI H, CHENG L.Bioactive inorganic nanomaterials for cancer theranostics.Chemical Society Reviews, 2023, 52(6): 2031. [6] ZOU Y, HUANG B, CAO L, et al. Tailored mesoporous inorganic biomaterials: assembly, functionalization, and drug delivery engineering. Advanced Materials, 2021, 33(2): 2005215. [7] QIN C, WU C.Inorganic biomaterials-based bioinks for three-dimensional bioprinting of regenerative scaffolds.VIEW, 2022, 3(4): 20210018. [8] ZHAO C, LIU W, ZHU M, et al. Bioceramic-based scaffolds with antibacterial function for bone tissue engineering: a review. Bioactive Materials, 2022, 18: 383. [9] ZHOU Y, WU C, CHANG J.Bioceramics to regulate stem cells and their microenvironment for tissue regeneration.Materials Today, 2019, 24: 41. [10] GOU Y, QI K, WEI Y, et al. Advances of calcium phosphate nanoceramics for the osteoinductive potential and mechanistic pathways in maxillofacial bone defect repair. Nano TransMed, 2024, 3: 100033. [11] ZHANG Y, XU J, RUAN Y C, et al. Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats. Nature Medicine, 2016, 22(10): 1160. [12] YANG Y, WANG H, YANG H, et al. Magnesium-based Whitlockite bone mineral promotes neural and osteogenic activities. ACS Biomaterials Science & Engineering, 2020, 6(10): 5785. [13] XU Y, XU C, HE L, et al. Stratified-structural hydrogel incorporated with magnesium-ion-modified black phosphorus nanosheets for promoting neuro-vascularized bone regeneration. Bioactive Materials, 2022, 16: 271. [14] MA Y X, JIAO K, WAN Q Q,et al. Silicified collagen scaffold induces semaphorin 3A secretion by sensory nerves to improve in-situ bone regeneration. Bioactive Materials, 2022, 9: 475. [15] MEI P, JIANG S, MAO L, et al. In situ construction of flower-like nanostructured calcium silicate bioceramics for enhancing bone regeneration mediated via FAK/p38 signaling pathway. Journal of Nanobiotechnology, 2022, 20(1): 162. [16] LI T, ZHAI D, MA B, et al. 3D Printing of hot dog-like Biomaterials with hierarchical architecture and distinct bioactivity. Advanced Science, 2019, 6(19): 1901146. [17] WENPING M, ZHIBO Y, MINGXIA L, et al. Hierarchically structured biomaterials for tissue regeneration. Microstructures, 2024, 4(2): 2024014. [18] YANG Z, XUE J, SHI Z, et al. Naturally derived flexible bioceramics: biomass recycling approach and advanced function. Matter, 2024, 7(3): 1275. [19] LIU Z, WAN X, WANG Z L, et al. Electroactive biomaterials and systems for cell fate determination and tissue regeneration: design and applications. Advanced Materials, 2021, 33(32): 2007429. [20] QIAN Y, LIN H, YAN Z, et al. Functional nanomaterials in peripheral nerve regeneration: scaffold design, chemical principles and microenvironmental remodeling. Materials Today, 2021, 51: 165. [21] ZHANG M, ZHAI X, MA T, et al. Sequential therapy for bone regeneration by cerium oxide-reinforced 3D-printed bioactive glass scaffolds. ACS Nano, 2023, 17(5): 4433. [22] KIM J W, MAHAPATRA C, HONG J Y, et al. Functional recovery of contused spinal cord in rat with the injection of optimal-dosed cerium oxide nanoparticles. Advanced Science, 2017, 4(10): 1700034. [23] ZHENG Y, WU J, ZHU Y, et al. Inorganic-based biomaterials for rapid hemostasis and wound healing. Chemical Science, 2022, 14(1): 29. [24] MA J, WU C. Bioactive inorganic particles-based biomaterials for skin tissue engineering. Exploration, 2022, 2/5: 20210083. [25] HAN D, LIU X, WU S.Metal organic framework-based antibacterial agents and their underlying mechanisms.Chemical Society Reviews, 2022, 51(16): 7138. [26] 张兴栋, WILLIAMS D.二十一世纪生物材料定义. 北京:科学出版社, 2021: 25. [27] WU C T, CHANG J.Silicate bioceramics for bone tissue regeneration.Journal of Inorganic Materials, 2013, 28(1): 29. [28] WU H, HUA Y, WU J, et al. The morphology of hydroxyapatite nanoparticles regulates clathrin-mediated endocytosis in melanoma cells and resultant anti-tumor efficiency. Nano Research, 2022, 15(7): 6256. [29] ZHU D, LU B, YANG Q, et al. Lanthanum-doped mesoporous bioglasses/chitosan composite scaffolds enhance synchronous osteogenesis and angiogenesis for augmented osseous regeneration. Chemical Engineering Journal, 2021, 405: 127077. [30] GUPTA B, PAPKE J B, MOHAMMADKHAH A,et al. Effects of chemically doped bioactive borate glass on neuron regrowth and regeneration. Annals of Biomedical Engineering, 2016, 44(12): 3468. [31] HUANG J, HUANG J, ZHANG X, et al. A bioactive multifunctional dressing with simultaneous visible monitoring of pH values and H2O2 concentrations for promoting diabetic wound healing. Materials Horizons, 2024, 10.1039/d4mh01142b. [32] HUANG J, ZHENG Y, NIU H, et al. A multifunctional hydrogel for simultaneous visible H2O2 monitoring and accelerating diabetic wound healing. Advanced Healthcare Materials, 2024, 13(3): 2302328. [33] ZHANG Z, KLAUSEN L H, CHEN M, et al. Electroactive scaffolds for neurogenesis and myogenesis: graphene-based nanomaterials. Small, 2018, 14(48): 1801983. [34] 宁成云, 毛传斌. 电活性生物材料. 北京:科学出版社, 2017: 1. [35] SHIN M, LIM J, PARK Y, et al. Carbon-based nanocomposites for biomedical applications. RSC Advances, 2024, 14(10): 7142. [36] ZHENG Y, HONG X, WANG J, et al. 2D Nanomaterials for tissue engineering and regenerative nanomedicines: recent advances and future challenges. Advanced Healthcare Materials, 2021, 10(7): 2001743. [37] WANG X, HAN X, LI C, et al. 2D materials for bone therapy. Advanced Drug Delivery Reviews, 2021, 178: 113970. [38] GU G, CUI Z, DU X, et al. Recent advances in biomacromolecule-reinforced 2D material (2DM) hydrogels: from interactions, synthesis, and functionalization to biomedical applications. Advanced Functional Materials, 2024, 34(48): 2408367. [39] WANG Z L.Progress in piezotronics and piezo-phototronics.Advanced Materials, 2012, 24(34): 4632. [40] KAPAT K, SHUBHRA Q T H, ZHOU M, et al. Piezoelectric nano-biomaterials for biomedicine and tissue regeneration. Advanced Functional Materials, 2020, 30(44): 1909045. [41] KIM W, LEE H, LEE J, et al. Efficient myotube formation in 3D bioprinted tissue construct by biochemical and topographical cues. Biomaterials, 2020, 230: 119632. [42] HE J, HAO M, DUAN J, et al. Synergistic effect of endocellular calcium ion release and nanotopograpy of one-dimensional hydroxyapatite nanomaterials for accelerating neural stem cell differentiation. Composites Part B-Engineering, 2021, 219: 108944. [43] DONG X, LIU S, YANG Y, et al. Aligned microfiber-induced macrophage polarization to guide schwann-cell-enabled peripheral nerve regeneration. Biomaterials, 2021, 272: 120767. [44] HAO M, ZHANG Z, LIU C, et al. Hydroxyapatite nanorods function as safe and effective growth factors regulating neural differentiation and neuron development. Advanced Materials, 2021, 33(33): 2100895. [45] DAI H, FAN Q, WANG C.Recent applications of immunomodulatory biomaterials for disease immunotherapy.Exploration, 2022, 2(6): 20210157. [46] LI L, XIAO B, MU J, et al. A MnO2 nanoparticle-dotted hydrogel promotes spinal cord repair via regulating reactive oxygen species microenvironment and synergizing with mesenchymal stem cells. ACS Nano, 2019, 13(12): 14283. [47] SUN Y, ZHANG H, ZHANG Y, et al. Li-Mg-Si bioceramics provide a dynamic immuno-modulatory and repair-supportive microenvironment for peripheral nerve regeneration. Bioactive Materials, 2023, 28: 227. [48] LEVIN M.Bioelectric signaling: reprogrammable circuits underlying embryogenesis, regeneration, and cancer.Cell, 2021, 184(8): 1971. [49] MURILLO G, BLANQUER A, VARGAS-ESTEVEZ C, et al. Electromechanical nanogenerator-cell interaction modulates cell activity. Advanced Materials, 2017, 29(24): 1605048. [50] ZHANG X, WANG T, ZHANG Z, et al. Electrical stimulation system based on electroactive biomaterials for bone tissue engineering. Materials Today, 2023, 68: 177. [51] KHARE D, BASU B, DUBEY A K.Electrical stimulation and piezoelectric biomaterials for bone tissue engineering applications.Biomaterials, 2020, 258: 120280. [52] SEBASTIAN A, VOLK S W, HALAI P, et al. Enhanced neurogenic biomarker expression and reinnervation in human acute skin wounds Treated by electrical stimulation. Journal of Investigative Dermatology, 2017, 137(3): 737. [53] FAN L, XIAO C, GUAN P, et al. Extracellular matrix-based conductive interpenetrating network hydrogels with enhanced neurovascular regeneration properties for diabetic wounds repair. Advanced Healthcare Materials, 2022, 11(1): 2101556. [54] TAN M-H, XU X-H, YUAN T-J, et al. Self-powered smart patch promotes skin nerve regeneration and sensation restoration by delivering biological-electrical signals in program. Biomaterials, 2022, 283: 121413. [55] GAO J, YU X, WANG X, et al. Biomaterial-related cell microenvironment in tissue engineering and regenerative medicine. Engieering, 2022, 13: 31. [56] ZHANG H, WU C.3D printing of biomaterials for vascularized and innervated tissue regeneration.International Journal of Bioprinting, 2023, 9(3): 1. [57] ZHANG H, MA W, MA H, et al. Spindle-like zinc silicate nanoparticles accelerating innervated and vascularized skin burn wound healing. Advanced Healthcare Materials, 2022,10: 2102359. [58] ZHANG Z, CHANG D, ZENG Z, et al. CuCS/Cur composite wound dressings promote neuralized skin regeneration by rebuilding the nerve cell “factory” in deep skin burns. Materials Today Bio, 2024, 26: 101075. [59] XU S, ZHANG Y, DAI B, et al. Green-prepared magnesium Silicate sprays enhance the repair of burn-skin wound and appendages regeneration in rats and minipigs. Advanced Functional Materials, 2024, 34(9): 2307439. [60] KANG Y, LIU K, CHEN Z, et al. Healing with precision: a multi-functional hydrogel-bioactive glass dressing boosts infected wound recovery and enhances neurogenesis in the wound bed. Journal of Controlled Release, 2024, 370: 210. [61] SAMANDARI M, QUINT J, RODRIGUEZ-DELAROSA A, et al. Bioinks and bioprinting strategies for skeletal muscle tissue engineering. Advanced Materials, 2022, 34(12): 2105883. [62] ZHANG H, QIN C, SHI Z, et al. Bioprinting of inorganic-biomaterial/neural-stem-cell constructs for multiple tissue regeneration and functional recovery. National Science Review, 2024, 11(4): nwae035. [63] ZHU Y, ZHANG X, CHANG G, et al. Bioactive glass in tissue regeneration: unveiling recent advances in regenerative strategies and applications. Advanced Materials, 2025, 37:202312964. [64] WOLTERINK R G J K, WU G S, CHIU I M, et al. Neuroimmune interactions in peripheral organs. Annual Review of Neuroscience, 2022, 45: 339. [65] LU Y Z, NAYER B, SINGH S K, et al. CGRP sensory neurons promote tissue healing via neutrophils and macrophages. Nature, 2024, 628: 604. [66] CUI X, WANG L, GAO X, et al. Self-assembled silk fibroin injectable hydrogels based on layered double hydroxides for spinal cord injury repair. Matter, 2024, 7(2): 620. [67] LIAN C, LIU J, WEI W, et al. Mg-gallate metal-organic framework-based sprayable hydrogel for continuously regulating oxidative stress microenvironment and promoting neurovascular network reconstruction in diabetic wounds. Bioactive Materials, 2024, 38: 181. [68] PENG L H, XU X H, HUANG Y F, et al. Self-adaptive all-in-one delivery chip for rapid skin nerves regeneration by endogenous mesenchymal stem cells. Advanced Functional Materials, 2020, 30(40): 2001751. [69] XU C, CHANG Y, WU P, et al. Two-dimensional-germanium phosphide-reinforced conductive and biodegradable hydrogel scaffolds enhance spinal cord injury repair. Advanced Functional Materials, 2021, 31(41): 2104440. [70] YU Q, JIN S, WANG S, et al. Injectable, adhesive, self-healing and conductive hydrogels based on MXene nanosheets for spinal cord injury repair. Chemical Engineering Journal, 2023, 452: 139252. [71] AN G, GUO F, LIU X, et al. Functional reconstruction of injured corpus cavernosa using 3D-printed hydrogel scaffolds seeded with HIF-1α-expressing stem cells. Nature Communications, 2020, 11: 2687. [72] WANG S, WANG Z, YANG W, et al. In situ-sprayed bioinspired adhesive conductive hydrogels for cavernous nerve repair. Advanced Materials, 2024, 36(19): 2311264. [73] PI W, CHEN H, LIU Y, et al. Flexible sono-piezo patch for functional sweat gland repair through endogenous microenvironmental remodeling. ACS Nano, 2024, 18(31): 20283. [74] CHEN P, XU C, WU P, et al. Wirelessly powered electrical-stimulation based on biodegradable 3D piezoelectric scaffolds promotes the spinal cord injury. ACS Nano, 2022, 16(10): 16513. [75] LIU Y, ZHANG Z, ZHAO Z, et al. An easy nanopatch promotes peripheral nerve repair through wireless ultrasound-electrical stimulation in a band-aid-like way. Advanced Functional Materials, 2024, 34:202407411. [76] WANG L, DU J, LIU Q, et al. Wrapping stem cells with wireless electrical nanopatches for traumatic brain injury therapy. Nature Communications, 2024, 15: 7223. [77] VARADARAJAN S G, HUNYARA J L, HAMILTON N R, et al. Central nervous system regeneration. Cell, 2022, 185(1): 77. |
[1] | 海热古·吐逊, 郭乐, 丁嘉仪, 周嘉琪, 张学良, 努尔尼沙·阿力甫. 上转换荧光探针辅助的光学成像技术在肿瘤显影中的应用研究进展[J]. 无机材料学报, 2025, 40(2): 145-158. |
[2] | 孙树娟, 郑南南, 潘昊坤, 马猛, 陈俊, 黄秀兵. 单原子催化剂制备方法的研究进展[J]. 无机材料学报, 2025, 40(2): 113-127. |
[3] | 陶桂龙, 支国伟, 罗添友, 欧阳佩东, 衣新燕, 李国强. 空腔型薄膜体声波滤波器的关键技术进展[J]. 无机材料学报, 2025, 40(2): 128-144. |
[4] | 周帆, 田志林, 李斌. 热防护系统用碳化物超高温陶瓷抗烧蚀涂层研究进展[J]. 无机材料学报, 2025, 40(1): 1-16. |
[5] | 魏相霞, 张晓飞, 徐凯龙, 陈张伟. 增材制造柔性压电材料的现状与展望[J]. 无机材料学报, 2024, 39(9): 965-978. |
[6] | 杨鑫, 韩春秋, 曹玥晗, 贺桢, 周莹. 金属氧化物电催化硝酸盐还原合成氨研究进展[J]. 无机材料学报, 2024, 39(9): 979-991. |
[7] | 刘鹏东, 王桢, 刘永锋, 温广武. 硅泥在锂离子电池中的应用研究进展[J]. 无机材料学报, 2024, 39(9): 992-1004. |
[8] | 黄洁, 汪刘应, 王滨, 刘顾, 王伟超, 葛超群. 基于微纳结构设计的电磁性能调控研究进展[J]. 无机材料学报, 2024, 39(8): 853-870. |
[9] | 陈乾, 苏海军, 姜浩, 申仲琳, 余明辉, 张卓. 超高温氧化物陶瓷激光增材制造及组织性能调控研究进展[J]. 无机材料学报, 2024, 39(7): 741-753. |
[10] | 王伟明, 王为得, 粟毅, 马青松, 姚冬旭, 曾宇平. 以非氧化物为烧结助剂制备高导热氮化硅陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 634-646. |
[11] | 蔡飞燕, 倪德伟, 董绍明. 高熵碳化物超高温陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 591-608. |
[12] | 吴晓晨, 郑瑞晓, 李露, 马浩林, 赵培航, 马朝利. SiCf/SiC陶瓷基复合材料高温环境损伤原位监测研究进展[J]. 无机材料学报, 2024, 39(6): 609-622. |
[13] | 赵日达, 汤素芳. 多孔碳陶瓷化改进反应熔渗法制备陶瓷基复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 623-633. |
[14] | 方光武, 谢浩元, 张华军, 高希光, 宋迎东. CMC-EBC损伤耦合机理及一体化设计研究进展[J]. 无机材料学报, 2024, 39(6): 647-661. |
[15] | 张幸红, 王义铭, 程源, 董顺, 胡平. 超高温陶瓷复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 571-590. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||